scholarly journals Juvenile tree growth correlates with photosynthesis and leaf phosphorus content in central Amazonia

Revista CERES ◽  
2015 ◽  
Vol 62 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Ricardo Antonio Marenco ◽  
Nilvanda dos Santos Magalhães ◽  
Paula Romenya dos Santos Gouvêa ◽  
Saul Alfredo Antezana-Vera

Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04). Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K), the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003). At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P

2004 ◽  
Vol 28 (1) ◽  
pp. 66-72
Author(s):  
ZHANG Guang-Can ◽  
LIU Xia ◽  
HE Kang-Ning ◽  
WANG Bai-Tian

2017 ◽  
Vol 4 (12) ◽  
pp. 170770 ◽  
Author(s):  
Ryan E. Sherman ◽  
Priyanka Roy Chowdhury ◽  
Kristina D. Baker ◽  
Lawrence J. Weider ◽  
Punidan D. Jeyasingh

The framework ecological stoichiometry uses elemental composition of species to make predictions about growth and competitive ability in defined elemental supply conditions. Although intraspecific differences in stoichiometry have been observed, we have yet to understand the mechanisms generating and maintaining such variation. We used variation in phosphorus (P) content within a Daphnia species to test the extent to which %P can explain variation in growth and competition. Further, we measured 33 P kinetics (acquisition, assimilation, incorporation and retention) to understand the extent to which such variables improved predictions. Genotypes showed significant variation in P content, 33 P kinetics and growth rate. P content alone was a poor predictor of growth rate and competitive ability. While most genotypes exhibited the typical growth penalty under P limitation, a few varied little in growth between P diets. These observations indicate that some genotypes can maintain growth under P-limited conditions by altering P use, suggesting that decomposing P content of an individual into physiological components of P kinetics will improve stoichiometric models. More generally, attention to the interplay between nutrient content and nutrient-use is required to make inferences regarding the success of genotypes in defined conditions of nutrient supply.


2015 ◽  
Vol 56 (2) ◽  
pp. 98-106
Author(s):  
Tomasz Kleiber ◽  
Klaudia Borowiak ◽  
Anna Budka ◽  
Dariusz Kayzer

Abstract Nutrition is one of the most important factors influencing quantitative and qualitative plant yield. This study examined the effect of manganese (Mn) in nutrient solution on photosynthetic activity parameters, and the relations between photosynthetic activity parameters, yield and plant nutrient status in tomato (Solanum lycoper-sicum L.). Mn supplementation significantly modified the nutrient content of leaves. Macronutrient content var-ied less than micronutrient content. The optimal Mn concentration differed between the studied cultivars. Both Mn deficit and Mn excess caused a decrease of tomato yield. Gas exchange parameters, relative water content (RWC) and specific leaf area (SLA) were measured in fully expanded tomato leaves. Certain levels of Mn were found to be needed for proper plant function and future yield, and toxic effects of excess Mn were noted. Changes in PN (net photosynthetic rate) were found to be the first signal of plant response to higher Mn supply, while yield was as for optimal Mn concentrations. Under Mn treatment, uptake of some nutrients increased. A higher level of absorbed Mg led to a higher photosynthesis rate and increased stomatal opening. PN and gs (stomatal con-ductance) also increased, while Ci (intercellular CO2 concentration) decreased, indicating proper CO2 consumption during the assimilation process.


HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2145-2150 ◽  
Author(s):  
Rashid Al-Yahyai ◽  
Bruce Schaffer ◽  
Frederick S. Davies

Two-year-old `Arkin' carambola (Averrhoa carambola L.) trees were grown in containers in a greenhouse and the field in a very gravelly loam soil. Trees in the field were subjected to four soil water depletion (SWD) levels which averaged, 10.5%, 26.5%, 41.0%, and 55.5% and trees in the greenhouse were maintained at field capacity or dried continuously to produce a range of SWD levels. The relationships between SWD and leaf (ΨL) and stem (Ψs) water potential, net CO2 assimilation (ACO2), stomatal conductance of water (gs) and transpiration (E) were determined. Coefficients of determination values between physiological variables were higher for trees in the greenhouse than in the field, which may have been due to greater fluctuations in vapor pressure deficit (VPD) in the field. Soil water depletion levels above 50% caused a reduction in Ψs that subsequently decreased gs. This reduction in Ψs was correlated with a linear reduction in E and a considerable decline in ACO2 when gs fell below about 50 mmol·m–2 ·s–1. Leaf gas exchange parameters were better correlated with Ψs than with SWD level. Therefore, Ψs may be a better predictor of carambola tree water status than SWD in a well-drained, very gravelly loam soil.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1290
Author(s):  
Mura Jyostna Devi ◽  
Vangimalla Reddy

Drought is a major abiotic stress factor limiting cotton yield. It is important to identify the genotypes that can conserve water under drought stress conditions and improve yield. The objective of the current study was to evaluate cotton genotypes for water conservation traits, i.e., high FTSW (Fraction of Transpirable Soil Water) threshold for transpiration. Plants utilize water slowly by declining transpiration at high FTSW and conserving soil water, which can be used by the plant later in the growing season to improve yield. Fifteen cotton varieties were selected based on their differences in transpiration response to elevated vapor pressure deficit (VPD) to study drought responses. Two pot experiments were carried out in the greenhouse to determine the FTSW threshold for the transpiration rate as the soil dried. A significant variation (p < 0.01) in the FTSW threshold values for transpiration decline was observed, ranging from 0.35 to 0.60 among cotton cultivars. Genotypes with high FTSW thresholds also displayed low transpiration under well-watered conditions. Further studies with four selected genotype contrasts in FTSW threshold values for transpiration showed differences (p < 0.05 to 0.001) in gas exchange parameters and water potentials. This study demonstrated that there are alternate traits among the cotton genotypes for enhancing soil water conservation to improve yield under water-limited conditions.


Author(s):  
Avinash Sarin Saxena ◽  
Sankar Chandra Paul ◽  
. Juhi

A study was conducted during 2017-18 under the All India Co-ordinated Research Project initiated in 2009 at research farm of Bihar Agricultural University, Sabour, Bhagalpur. The aim of this study was compare the nutrient concentration of coconut leaves at different nutrient levels through drip fertigation in a Randomized Block Design (RBD) with four (4) replications. Result was observed that leaf Nitrogen, Phosphorous, Sulphur, Iron, Manganese, Copper and Boron content under different fertigation treatments were not significantly different from each other. The content of micronutrients in leaf were found to increase with increasing levels of fertilizer in the treatments. Cation Exchange Capacity was positively correlated with all the leaf nutrients. Organic carbon did not show remarkable relation with plant nutrient parameters. Soil K content of all three depths was positively correlated with all the leaf nutrient elements. Soil pH value was positively correlated with leaf P content in coconut which explains that leaf P content is directly proportional to the soil pH value. Electrical conductivity (EC) of soil was also positively correlated with P, K and B concentration in coconut leaf. Correlation coefficient value between CEC and leaf nutrient contents explains that 2nd depth of soil is more important for mineral nutrition of coconut palm. Correlation coefficient values between soil P content and leaf nutrient content. Higher correlation coefficient value was found at lower soil depth between available sulphur content in soil and sulphur content in leaf of coconut. This result suggests that inherent supplying capacity of micronutrient of experimental soil is not so influential for higher plant growth, but application of N, P and K fertilizers trigger the absorption capacity for micronutrient from soil. Under different NPK levels, the applied NPK does not have significant effect on leaf N, P, S, Zn content after five (5) years of experimentation while the effect was found to be significant for few elements like K, Fe, Mn, Cu, and B. An increasing trend was observed for leaf nutrient content with increasing levels of fertilizer application.


2012 ◽  
Vol 63 (2) ◽  
pp. 127-133
Author(s):  
Agnieszka Pszczółkowska ◽  
Gabriel Fordoński ◽  
Jacek Olszewski ◽  
Tomasz Kulik ◽  
Iwona Konopka

The present study investigated the effect of different soil moisture content levels (60 - 70% SWC (soil water capacity) - control; 30 - 35% SWC - water stress) on yields, gas exchange parameters, seed health, and protein fractions of husked oat grain. The study showed that water deficit resulted in a decrease in grain weight per plant and a reduction in the gas exchange rates, primarily the photosynthesis and transpiration rates. <i>Cladosporium cladosporioides</i> was the dominant species on oat kernels in both experimental treatment options and in both years of the study. The presence of <i>Fusarium poae</i> was also found. Higher contents of prolamin, albumin and globulin fractions were found in the oat grain harvested from plants grown under soil water deficit conditions.


Sign in / Sign up

Export Citation Format

Share Document