scholarly journals Residual nitrogen fertilization effect of common bean production on succeeding corn intercropped with Congo grass

Revista CERES ◽  
2016 ◽  
Vol 63 (4) ◽  
pp. 576-583
Author(s):  
Antonio Carlos de Almeida Carmeis Filho ◽  
Tatiana Pagan Loeiro da Cunha ◽  
Fábio Luiz Checchio Mingotte ◽  
Isaac Silva Martins ◽  
Leandro Borges Lemos ◽  
...  

ABSTRACT Crop production in conservation systems involving intercropped cultivations mainly with corn have been proposed as a technology to promote sustainability in the Brazilian Cerrado areas. The objective of this work was to evaluate the influence of residual nitrogen fertilization applied in common bean on subsequent corn sole or intercropped with Congo grass (Urochloa ruziziensis) in no-tillage system. The experiment was carried out in randomized blocks with three replicates in a split-plot design. The treatments were composed by two cropping systems (sole and intercropped with Congo grass), and the sub-plots were five doses of nitrogen (0; 40; 80; 120 and 160 kg of N ha-1), applied in topdressing on common-bean (previous crop). There was no effect of cropping systems and residual amount of nitrogen application in the vegetative and reproductive development of corn. Corn intercropped with Congo grass leaded an adequate formation of crop residue and total land covering target at sustainability of no-tillage system.

2017 ◽  
Vol 47 (2) ◽  
pp. 195-201 ◽  
Author(s):  
Jordana de Araujo Flôres ◽  
Camila Baptista do Amaral ◽  
Carolina Cipriano Pinto ◽  
Fábio Luiz Checchio Mingotte ◽  
Leandro Borges Lemos

ABSTRACT The no-tillage system can change the nitrogen dynamics in the soil, being necessary to adjust the nitrogen fertilization in order to provide this nutrient during critical phases of the common bean growth. This study aimed at evaluating the agronomic and qualitative traits of common bean grown under different straw types, as a function of the topdressing nitrogen fertilization splitting. A randomized block experimental design, in a split-plot arrangement, with four replications, was used. The plots consisted of three straw types (maize, maize intercropped with brachiaria and brachiaria), while the subplots comprised the combination of these straw materials with 8 topdressing nitrogen fertilization splitting arrangements. The common bean on brachiaria straw shows higher grain yields and crude protein contents. The nitrogen fertilization splitting, as topdressing, interacts with the straw types, increasing the number of pods per plant. The common bean plants growing on plots with single-maize straw had a shorter time for maximum hydration. The topdressing nitrogen fertilization splitting has no effect on the common bean qualitative traits.


2021 ◽  
Vol 34 (1) ◽  
pp. 108-118
Author(s):  
FÁBIO LUIZ CHECCHIO MINGOTTE ◽  
FÁBIO TIRABOSCHI LEAL ◽  
MARCELA MIDORI YADA DE ALMEIDA ◽  
ORLANDO FERREIRA MORELLO ◽  
TATIANA PAGAN LOEIRO DA CUNHA-CHIAMOLERA ◽  
...  

ABSTRACT Determining nitrogen (N) accumulation and export by common bean as a function of straw and of the splitting of this nutrient is very important, aiming at the management and sustainability of agricultural systems. This study aimed to determine the N accumulation and export by common bean as a function of Zea mays and Urochloa ruziziensis grass straw (maize, maize/U. ruziziensis intercropping and U. ruziziensis) and splitting of top-dressing N fertilization. The experiment was conducted in Jaboticabal-SP-Brazil, during the 2012/13 crop season, in a Red Eutrophic Oxisol (Eutrudox) in no-tillage under irrigation. The experimental design was a randomized block with split plots with four replicates, totaling 120 subplots sized in 25m2 each. The plots consisted of the cropping systems prior to common bean: maize, maize/ U. ruziziensis intercropping and U. ruziziensis. The subplots were composed of ten top-dressing N fertilization splitting schemes (NS) at the phenological stages V3, V4 and R5 in different combinations. Common bean grain yield differs among cropping systems and as a function of top-dressed N split application. U. ruziziensis grass as single crop promotes greater N accumulation in common bean shoots compared to maize and its intercropping with U. ruziziensis grass. Regardless the cropping system, top-dressing N application in a single dose (90 kg ha-1) at V4 leads to similar accumulations and exports to those found in the absence of N fertilization. Splitting schemes with N application at the R5 stage increase the exports of this nutrient by common bean in succession to maize and its intercropping with U. ruziziensis grass.


Author(s):  
Stefany Silva de Souza ◽  
Pedro Afonso Couto Júnior ◽  
Jordana de Araujo Flôres ◽  
Fábio Luiz Checchio Mingotte ◽  
Leandro Borges Lemos

ABSTRACT The common bean succession to intercropped crops in the no-tillage system is beneficial, especially in the search for sustainability. In addition to the straw production, the intercropping can supply nitrogen (N) to the common bean grown in succession, reducing the use of mineral fertilizer, which is pollutant and has a high cost. The present study aimed to evaluate the response to N fertilization of common bean in succession to maize cropping systems, as well as the viability of these systems in the no-tillage system. The experimental design was randomized blocks, in a split-plot arrangement, with four replicates. The plots consisted of the following systems: maize as a single crop, maize intercropped with brachiaria and maize intercropped with crotalaria. The subplots were five N doses (0 kg ha-1, 50 kg ha-1, 100 kg ha-1, 150 kg ha-1 and 200 kg ha-1), applied as topdressing fertilization in winter common bean, in succession to the maize cropping systems. For the maize cultivation systems, the grain yield and N amount and accumulation in the straw were evaluated. As for the common bean in succession, the grain yield and grain quality attributes were assessed. Although the three cropping systems were viable for maize grain yield, the intercropping of maize with crotalaria led to a higher N accumulation in the straw and a larger quantity of straw dry mass. The increase of the N doses promoted an increase in the grain yield of common bean grown in succession to intercropped maize. Maize intercropped with crotalaria resulted in grains with a higher size and, concerning the grain yield, an equivalent effect to that of a topdressing application of more than 200 kg ha-1 of N was observed for the common bean in succession.


Revista CERES ◽  
2014 ◽  
Vol 61 (1) ◽  
pp. 62-69
Author(s):  
Gessimar Nunes Camelo ◽  
Geraldo Antonio de Andrade Araújo ◽  
Renildes Lucio Ferreira Fontes ◽  
Luiz Antonio dos Santos Dias ◽  
José Eustáquio de Souza Carneiro ◽  
...  

The effect of molybdenum (Mo) on common bean grown in desiccated corn stover in a no-tillage system was evaluated under two application modes: Mo mixed with the desiccant glyphosate and Mo direct spray to the bean leaves. The treatments (four replicates) were assigned to a completely randomized block design in a split-plot arrangement with the application of Mo (0, 100, 200, 400 and 800 g ha-1) mixed with glyphosate in the main plots and Mo foliar spray (0 and 100 g ha-1) in the sub-plots. The field experiments were carried out in 2009 and 2010 in the municipality of Coimbra, Minas Gerais State, with the common bean cultivar Ouro Vermelho. Mo mixed with glyphosate had neither an effect on common bean yield nor on the Mo and N contents in leaves, however it increased the Mo and N contents in seeds. Application of Mo via foliar spray increased Mo content in leaves and Mo and N contents in seeds. The reapplication of molybdenum with glyphosate for desiccation in subsequent crops caused a cumulative effect of Mo content in bean seeds.


2020 ◽  
pp. 1-12
Author(s):  
Marcio Souza da Silva ◽  
Gustavo Roberto Fonseca de Oliveira ◽  
Luís Fernando Merloti ◽  
João William Bossolani ◽  
Liliane Santos de Camargos ◽  
...  

2003 ◽  
Vol 95 (6) ◽  
pp. 1525-1531 ◽  
Author(s):  
Mariana A. Melaj ◽  
Hernán E. Echeverría ◽  
Silvia C. López ◽  
Guillermo Studdert ◽  
Fernando Andrade ◽  
...  

2020 ◽  
Vol 87 ◽  
Author(s):  
Djavan Pinheiro Santos ◽  
Robélio Leandro Marchão ◽  
Ronny Sobreira Barbosa ◽  
Juvenal Pereira da Silva Junior ◽  
Everaldo Moreira da Silva ◽  
...  

ABSTRACT: The soil macrofauna is fundamental for the maintenance of soil quality. The aim of this study was to characterize the soil macrofauna under different species of cover crops, including monoculture or intercropping associated to two types of soil management in the southwest region of Piauí state. The study was carried out in an Oxisol (Latossolo Amarelo, according to Brazilian Soil Classification System) in the municipality of Bom Jesus, Piauí, distributed in 30 m2 plots. Testing and evaluation of the soil macrofauna were conducted in a 9 × 2 strip factorial design, with combinations between cover crops/consortia and soil management (with or without tillage), with four replications. Soil monoliths (0.25 × 0.25 m) were randomly sampled in each plot for macrofauna at 0‒0.1, 0.1‒0.2, and 0.2‒0.3 m depth, including surface litter. After identification and counting of soil organims, the relative density of each taxon in each depth was determined. The total abundance of soil macrofauna quantified under cover crops in the conventional and no-tillage system was 2,408 ind. m-2, distributed in 6 classes, 16 orders, and 31 families. The results of multivariate analysis show that grass species in sole cropping systems and no-tillage presents higher macrofauna density, in particular the taxonomic group Isoptera. No-tillage also provided higher richness of families, where Coleoptera adult were the second more abundant group in no-tillage and Hemiptera in conventional tillage.


2021 ◽  
Vol 5 ◽  
Author(s):  
Tindall Ouverson ◽  
Jed Eberly ◽  
Tim Seipel ◽  
Fabian D. Menalled ◽  
Suzanne L. Ishaq

Industrialized agriculture results in simplified landscapes where many of the regulatory ecosystem functions driven by soil biological and physicochemical characteristics have been hampered or replaced with intensive, synthetic inputs. To restore long-term agricultural sustainability and soil health, soil should function as both a resource and a complex ecosystem. In this study, we examined how cropping systems impact soil bacterial community diversity and composition, important indicators of soil ecosystem health. Soils from a representative cropping system in the semi-arid Northern Great Plains were collected in June and August of 2017 from the final phase of a 5-year crop rotation managed either with chemical inputs and no-tillage, as a USDA-certified organic tillage system, or as a USDA-certified organic sheep grazing system with reduced tillage intensity. DNA was extracted and sequenced for bacteria community analysis via 16S rRNA gene sequencing. Bacterial richness and diversity decreased in all farming systems from June to August and was lowest in the chemical no-tillage system, while evenness increased over the sampling period. Crop species identity did not affect bacterial richness, diversity, or evenness. Conventional no-till, organic tilled, and organic grazed management systems resulted in dissimilar microbial communities. Overall, cropping systems and seasonal changes had a greater effect on microbial community structure and diversity than crop identity. Future research should assess how the rhizobiome responds to the specific phases of a crop rotation, as differences in bulk soil microbial communities by crop identity were not detectable.


2016 ◽  
Vol 15 (3) ◽  
pp. 439
Author(s):  
GUILHERME FELISBERTO ◽  
PATRÍCIA APARECIDA DE CARVALHO FELISBERTO ◽  
LEANDRO FLÁVIO CARNEIRO ◽  
PAULO CÉSAR TIMOSSI ◽  
FLÁVIO HIROSHI KANEKO ◽  
...  

RESUMO – A resposta à adubação nitrogenada da cultura do milho é dependente do tipo de solo, sistema de cultivo, dose empregada e cultura antecessora. Nesse contexto, objetivou-se com o presente trabalho avaliar os efeitos dos resíduos vegetais de plantas de cobertura e da adubação nitrogenada no milho cultivado em sequência, sob sistema de plantio direto em consolidação no Cerrado. O experimento foi constituído de um fatorial 10 x 4, em delineamento de blocos casualizados e esquema de parcelas subdivididas, com quatro repetições. Os tratamentos das parcelas foram os resíduos do cultivo de dez plantas de cobertura (Cajanus cajan, Canavalia ensiformis, Crambe abyssinica, Crotalaria juncea, Crotalaria ochroleuca, Crotalaria spectabilis, Mucuna aterrima, Pennisetum glaucum, Raphanus sativus e Urochloa ruziziensis) e, nas subparcelas, foram testadas quatro doses de nitrogênio (0, 50, 100 e 150 kg ha-1 de N) em cobertura no estádio V5 da cultura do milho. Observou-se baixa resposta à adubação nitrogenada em cobertura, o que foi atribuído principalmente à ocorrência de déficit hídrico nas fases de florescimento e enchimento de grãos. De modo geral, as características agronômicas do milho foram mais influenciadas pela adubação nitrogenada do que pelas plantas de cobertura cultivadas anteriormente. O ganho médio de produtividade de grãos foi da ordem de 3,7 kg para cada 1 kg de N aplicado. O milho após Urochloa ruziziensis e Crambe abyssinica apresenta menor produtividade em relação ao uso das outras espécies de plantas de cobertura, independentemente da adubação nitrogenada.Palavras-chave: adubação verde, sistema conservacionista, veranico, Zea mays.COVER CROPS AND NITROGEN FERTILIZATION ON MAIZE GROWN IN NO-TILLAGE SYSTEM UNDER WATER DEFICIT ON CERRADO SOILABSTRACT - The response to nitrogen fertilization of the corn is dependent on the type of soil, cropping system, dose used and preceding crop. In this context, the goal of the present study was to evaluate the effects of cover crops residues and nitrogen fertilization on corn grown in succession, under no-tillage system in the Cerrado region. The experiment was arranged in a factorial 10 x 4, in a randomized complete block design and subdivided plot scheme, with four replications. The treatments of the plots were the residues of ten cover crops (Cajanus cajan, Canavalia ensiformis, Crambe abyssinica, Crotalaria juncea, Crotalaria ochroleuca, Crotalaria spectabilis, Mucuna aterrima, Pennisetum glaucum, Raphanus sativus and Urochloa ruziziensis) and in the subplots four nitrogen doses (0, 50, 100 and 150 kg ha-1 of N) were tested in the V5 stage of the corn. A low response to nitrogen fertilization was observed, which was mainly attributed to the occurrence of water deficit at the flowering and grain filling stages. In general, the agronomic characteristics of corn were more influenced by nitrogen fertilization than by the cover crops previously cultivated. The average gain of grain yield was of the order of 3.7 kg for each 1 kg ha-1 of N applied. Corn after Urochloa ruziziensis and Crambe abyssinica presented lower productivity compared to the use of other cover crop species, regardless nitrogen fertilization.Keywords: green manure, conservation tillage system, summer water deficit, Zea mays.


Sign in / Sign up

Export Citation Format

Share Document