scholarly journals Self-incompatibility characterization in segregating populations of apple trees with DNA markers for S-alleles

2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Thyana Lays Brancher ◽  
Maraisa Crestani Hawerroth ◽  
Fernando José Hawerroth ◽  
Marcus Vinícius Kvitschal ◽  
Frederico Denardi ◽  
...  

Abstract The objective of this study was to characterize the parents and respective populations of apple trees regarding S-alleles to confirm their genealogy and to evaluate the efficiency of the molecular markers used. Sixteen specific sets of primers were used for identification of apple S-alleles by PCR. Two segregating populations of the Epagri Apple Breeding Program resulting from crosses between ‘Fred Hough’ × ‘Monalisa’ and ‘M-11/00’ × ‘M-13/91’ were evaluated. The expected segregations are 1:1:1:1 for full compatibility and 1:1 for semi-compatibility, which can be confirmed by the X2 test. The ‘Fred Hough’ (S5S19) × ‘Monalisa’ (S2S10) cross proved to be fully compatible; and two triploids were identified among the hybrids as well. The ‘M-11/00’ (S3S19) × ‘M-13/91’ (S3S5) cross was characterized as semi-compatible based on DNA markers, and the segregation of the S-alleles in the hybrids was 1:1, as expected. The segregation of the DNA markers occurred together with their respective S-alleles: S2, S3, S5, S10, and S19. Thus, characterization of the S-alleles not only allowed identification of compatibility between parents but also identified contaminations in segregating populations.

2013 ◽  
Vol 49 (No. 4) ◽  
pp. 131-139 ◽  
Author(s):  
L.R.D. Chinnappareddy ◽  
K. Khandagale ◽  
A. Chennareddy ◽  
V.G. Ramappa

The genus Allium (Family: Alliaceae) is the most important among the bulbous vegetable crops. characterization of Alliums based on phenotypic traits is influenced by the environment and leads to biased diversity estimates. Recognizing the potential of DNA markers in plant breeding, researchers have adopted the molecular markers for marker-assisted selection (MAS), quantitative trait loci (QTL) mapping and characterization of different quality traits in Alliums. This review presents details about the use of DNA markers in Alliums for cultivar identification, diversity studies, SSR development, colour improvement, total soluble solids (TSS), cytoplasmic male sterility (CMS) and efforts of DNA sequencing. As there are no such reports to describe the above work under a single heading, we decided to mine literature for those who are working in onion, garlic, chives and leek improvement to generate new insights in the subject.


Author(s):  
J. Halász ◽  
A. Kurilla ◽  
A. Hegedűs

European plum is an important fruit crop with complex, hexaploid genome of unknown origin. The characterization of the selfincompatibility (S) locus of 16 European plum cultivars was carried out using the PaConsI-F primer in combination with the EM-PC1consRD primer for the first intron and the EM-PC2consFD and EM-PC3consRD primers for the second intron amplification. Altogether, 18 different alleles were scored indicating high genetic diversity. These alleles were labelled using alphabetical codes from SA to SS. We  identified 5 different alleles in 9 cultivars, 4 alleles in 5 cultivars, while 3 alleles were shown in two of the assayed cultivars. A total of 16 different S-genotypes were assigned, and discrimination of all plum cultivars was successful based on their unique S-genotypes. However, further research is required to reliably identify the S-alleles based on their DNA sequence and clarify complete S-genotypes.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 387-399 ◽  
Author(s):  
Mikkel H Schierup ◽  
Barbara K Mable ◽  
Philip Awadalla ◽  
Deborah Charlesworth

Abstract We study the segregation of variants of a putative self-incompatibility gene in Arabidopsis lyrata. This gene encodes a sequence that is homologous to the protein encoded by the SRK gene involved in self-incompatibility in Brassica species. We show by diallel pollinations of plants in several full-sib families that seven different sequences of the gene in A. lyrata are linked to different S-alleles, and segregation analysis in further sibships shows that four other sequences behave as allelic to these. The family data on incompatibility provide evidence for dominance classes among the S-alleles, as expected for a sporophytic SI system. We observe no division into pollen-dominant and pollen-recessive classes of alleles as has been found in Brassica, but our alleles fall into at least three dominance classes in both pollen and stigma expression. The diversity among sequences of the A. lyrata putative S-alleles is greater than among the published Brassica SRK sequences, and, unlike Brassica, the alleles do not cluster into groups with similar dominance.


Author(s):  
Nadia Faqir ◽  
Aish Muhammad ◽  
Muhammad Zeeshan Hyder

Date palm has a long history of cultivation and a valuable germplasm with little knowledge about its genetic makeup and variation among the most cultivated cultivars. Diversity is the variability of a species. Plants show variation in yield, vegetative traits and morphological properties of fruits and seeds in response to environmental changes. Molecular markers or DNA markers have been in use since past three decades. The DNA profiles give information about the genotype, screen the whole genome and show variation in both the coding and noncoding region and hence give information about polymorphism. Since plastid genes are transferred mostly from the mother line, the identification of maternal lines is possible by the sequencing of plastid genes. Simple sequence repeats (SSRs) can detect length variation with the help of Polymerase Chain Reaction (PCR) and may be used as highly informative genetic markers. Single Nucleotide Polymorphism (SNPs) are the third generation of molecular markers. SNPs are more stable and have high fidelity of inheritance as compared to other marker systems. Molecular markers have been developed but they are not enough for sufficient diversity assessment. Therefore there is a need to increase the number of DNA markers in date palm. Previously, there are several studies to type various commercially important germplasm based on morphological or yield parameters. Morphological and biochemical markers are limited in number and are affected by environmental factors and growth stage of the plant which reduce their reliability in the assessment of diversity and characterization of the germplasm. This necessitates the use of genetic characterization, utilizing DNA markers, gene sequencing or SNP genotyping which can work independent of the plant growth stage and are not affected by environmental factors. A combination of morphological, biochemical and molecular characterization of the date palm cultivars can better assess the level of diversity and relationship among the cultivars.


HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 318-320 ◽  
Author(s):  
Nachida Ben-Njima ◽  
_ _

Pollen tube growth was studied in 10 almond [Prunus amygdalus Batsch, syn. P. dulcis (Mill.) D.A. Webb] selections of the Zaragoza breeding program, whose main objective is the development of self-compatible cultivars. Self-compatibility was evident in eight of the selections, as indicated by the fact that pollen tube growth was similar following self- and cross-pollination. In the other two selections, pollen tube growth differed following self- and cross-pollination, one showing self-incompatibility and the other an irregular progression of crossed pollen tubes. The importance of the style in sustaining pollen tube growth was evident, and pollen tube growth was influenced by style type.


2009 ◽  
Vol 35 (11) ◽  
pp. 2107-2115 ◽  
Author(s):  
Huai-Jun TANG ◽  
Gui-Hong YIN ◽  
Xian-Chun XIA ◽  
Jian-Jun FENG ◽  
Yan-Ying QU ◽  
...  

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Oleg S. Alexandrov ◽  
Olga V. Razumova ◽  
Gennady I. Karlov

5S rDNA is organized as a cluster of tandemly repeated monomers that consist of the conservative 120 bp coding part and non-transcribed spacers (NTSs) with different lengths and sequences among different species. The polymorphism in the 5S rDNA NTSs of closely related species is interesting for phylogenetic and evolutional investigations, as well as for the development of molecular markers. In this study, the 5S rDNA NTSs were amplified with universal 5S1/5S2 primers in some species of the Elaeagnaceae Adans. family. The polymerase chain reaction (PCR) products of five Elaeagnus species had similar lengths near 310 bp and were different from Shepherdia canadensis (L.) Nutt. and Sh. argentea (Pusch.) Nutt. samples (260 bp and 215 bp, respectively). The PCR products were cloned and sequenced. An analysis of the sequences revealed that intraspecific levels of NTS identity are high (approximately 95–96%) and similar in the Elaeagnus L. species. In Sh. argentea, this level was slightly lower due to the differences in the poly-T region. Moreover, the intergeneric and intervarietal NTS identity levels were studied and compared. Significant differences between species (except E. multiflora Thunb. and E. umbellata Thunb.) and genera were found. Herein, a range of the NTS features is discussed. This study is another step in the investigation of the molecular evolution of Elaeagnaceae and may be useful for the development of species-specific DNA markers in this family.


Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 685-697 ◽  
Author(s):  
Edward K Kentner ◽  
Michael L Arnold ◽  
Susan R Wessler

Abstract The Louisiana iris species Iris brevicaulis and I. fulva are morphologically and karyotypically distinct yet frequently hybridize in nature. A group of high-copy-number TY3/gypsy-like retrotransposons was characterized from these species and used to develop molecular markers that take advantage of the abundance and distribution of these elements in the large iris genome. The copy number of these IRRE elements (for iris retroelement), is ∼1 × 105, accounting for ∼6–10% of the ∼10,000-Mb haploid Louisiana iris genome. IRRE elements are transcriptionally active in I. brevicaulis and I. fulva and their F1 and backcross hybrids. The LTRs of the elements are more variable than the coding domains and can be used to define several distinct IRRE subfamilies. Transposon display or S-SAP markers specific to two of these subfamilies have been developed and are highly polymorphic among wild-collected individuals of each species. As IRRE elements are present in each of 11 iris species tested, the marker system has the potential to provide valuable comparative data on the dynamics of retrotransposition in large plant genomes.


Sign in / Sign up

Export Citation Format

Share Document