scholarly journals Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Julia da Silva Machado ◽  
Luís Carlos Iuñes Oliveira Filho ◽  
Julio Cesar Pires Santos ◽  
Alexandre Tadeu Paulino ◽  
Dilmar Baretta

Abstract: The aim of this work was to evaluate the soil quality of native forest, eucalyptus plantations, pasture, integrated crop-livestock, and no-tillage systems, correlating the morphological diversity of springtails with physical and chemical soil properties. Springtail samples were captured from soils of the southern plateau of the State of Santa Catarina in Brazil, during winter and summer, by using Pitfall traps, using a 3 × 3 point grid. The morphotyping of springtails consisted of the observation of five traits and for each one a partial value of the eco-morphological index was assigned to obtain the modified Soil Quality Index. A correlation of the morphotype abundance and diversity with physical (soil moisture, bulk density, biopores, microporosity, and macroporosity) and chemical (pH in water, calcium/magnesium ratio and total organic carbon content) soil properties was studied, describing all results by variance and multivariate analyses. The springtail abundance and diversity were influenced by the different land use systems. Higher soil quality index was determined in native forest followed by eucalyptus plantations, pasture, no-tillage system and integrated crop-livestock, in the winter. Moreover, higher soil quality index was found in native forest followed by integrated crop-livestock, eucalyptus plantations, no-tillage system and pasture, in the summer. Therefore, the quality index of a soil can be evaluated by the springtail morphological traits in correlation with the physical and chemical properties such as calcium/magnesium ratio, total organic carbon contents, biopores, macroporosity, microporosity, soil moisture, bulky density and pH.

Author(s):  
Marla O. Fagundes ◽  
Diony A. Reis ◽  
Roberto B. Portella ◽  
Fabiano J. Perina ◽  
Julio C. Bogiani

ABSTRACT Assessing soil quality under different cover crops or different management systems is essential to its conservation. This study aimed to evaluate an Oxisol cultivated with corn and cotton, after different crop successions and under no-tillage system (NTS) and conventional tillage system (CT), through the soil quality index (SQI), using an area of native Cerrado as reference. The study was carried out in the municipality of Luís Eduardo Magalhães, Western Bahia, Brazil. Soil samples with the preserved and non-preserved structure were collected in the layers of 0-0.05 m, 0.05-0.10 m, and 0.10-0.20 m to determine the macroporosity, the soil bulk density, the available water, the levels of total organic carbon, the clay dispersed in water, and the degree of flocculation. The averages of the attributes measured in the treatments and the soil quality index, which was elaborated by the method of deviations of the values of the attributes measured in the treatments concerning the reference area, followed by normalization, were compared by the Duncan test (p ≤ 0.05). The soil under CT, in all treatments, had its quality reduced when compared to the NTS. Also, the SQI used was sensitive to detect the changes caused by the management systems and assign consistent scores to the evaluated soil quality.


Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 115-123 ◽  
Author(s):  
K. Zhang ◽  
H. Zheng ◽  
F. L. Chen ◽  
Z. Y. Ouyang ◽  
Y. Wang ◽  
...  

Abstract. Vegetation plays a key role in maintaining soil quality, but long-term changes in soil quality due to plant species change and successive planting are rarely reported. Using the space-for-time substitution method, adjacent plantations of Pinus and first, second, third and fourth generations of Eucalyptus in Guangxi, China were used to study changes in soil quality caused by converting Pinus to Eucalyptus and successive Eucalyptus planting. Soil chemical and biological properties were measured and a soil quality index was calculated using principal component analysis. Soil organic carbon, total nitrogen, alkaline hydrolytic nitrogen, microbial biomass carbon, microbial biomass nitrogen, cellobiosidase, phenol oxidase, peroxidase and acid phosphatase activities were significantly lower in the first and second generations of Eucalyptus plantations compared with Pinus plantation, but they were significantly higher in the third and fourth generations than in the first and second generations and significantly lower than in Pinus plantation. Soil total and available potassium were significantly lower in Eucalyptus plantations (1.8–2.5 g kg−1 and 26–66 mg kg−1) compared to the Pinus plantation (14.3 g kg−1 and 92 mg kg−1), but total phosphorus was significantly higher in Eucalyptus plantations (0.9–1.1 g kg−1) compared to the Pinus plantation (0.4 g kg−1). As an integrated indicator, soil quality index was highest in the Pinus plantation (0.92) and lowest in the first and second generations of Eucalyptus plantations (0.24 and 0.13). Soil quality index in the third and fourth generations (0.36 and 0.38) was between that in Pinus plantation and in first and second generations of Eucalyptus plantations. Changing tree species, reclamation and fertilization may have contributed to the change observed in soil quality during conversion of Pinus to Eucalyptus and successive Eucalyptus planting. Litter retention, keeping understorey coverage, and reducing soil disturbance during logging and subsequent establishment of the next rotation should be considered to help improving soil quality.


2022 ◽  
Vol 14 (2) ◽  
pp. 597
Author(s):  
Paula Godinho Ribeiro ◽  
Gabriel Caixeta Martins ◽  
Markus Gastauer ◽  
Ediu Carlos da Silva Junior ◽  
Diogo Corrêa Santos ◽  
...  

Rehabilitation is the key factor for improving soil quality and soil carbon stock after mining operations. Monitoring is necessary to evaluate the progress of rehabilitation and its success, but the use of repeated field surveys is costly and time-consuming at a large scale. This study aimed to monitor the environmental/soil rehabilitation process of an Amazonian sandstone mine by applying spectral indices for predicting soil organic carbon (SOC) stock and comparing them to soil quality index. The studied area has different chronological rehabilitation stages: initial, intermediate, and advanced with 2, 10, and 12 years of onset rehabilitation activities, respectively. Non-rehabilitated (NR) and two native forest areas (RA) were used as controls. Soil samples were analyzed for physical, chemical, and biological attributes. After determination of Normalized Difference Vegetation Index and Bare Soil Index, simple regression analysis comparing these indices with SOC stock showed a good fit (R2 = 0.82). Rehabilitated areas presented higher soil quality index (~1.50-fold) and SOC stock (~10.6-fold) than NR; however, they did not differ of RA. The use of spectral indices was effective for monitoring the soil quality in this study, with a positive correlation between the predicted SOC stock and the calculated soil quality index.


Author(s):  
Sheila Trierveiler de Souza ◽  
Paulo Cezar Cassol ◽  
Dilmar Baretta ◽  
Marie Luise Carolina Bartz ◽  
Osmar Klauberg Filho ◽  
...  

2019 ◽  
Vol 35 (4) ◽  
Author(s):  
Danielle Medina Rosa ◽  
Lúcia Helena Pereira Nóbrega ◽  
Márcia Maria Mauli ◽  
Gislaine Piccolo de Lima ◽  
Ariane Spiassi ◽  
...  

Crop rotation has been a daily management to ensure viability of no-tillage system; however, it is few accepted and practiced by farmers. Thus, this study aims to establish a crop rotation scheme in soil quality. Consequently, cover crops of dwarf mucuna, pigeon pea dwarf, sun hemp and maize were cropped in 2010 under no-tillage system. Soil properties were determined prior their beginning, after the management of cover crops and maize harvest. Results were submitted to ANOVA and averages were compared. The macroporosity and total porosity answered to the adopted management with some variation. So, cover crops need much time to express their potential, mainly related to the physical characteristics of the studied soil. Chemical properties are susceptible to this management since higher changes were observed after management with cover crops. This crop rotation in a long term may allow the maintenance of soil quality because it avoids losses of nutrients and carbon.


Author(s):  
Gabriela C. Lima ◽  
Marx L. N. Silva ◽  
Diego A. F. de Freitas ◽  
Bernardo M. Cândido ◽  
Nilton Curi ◽  
...  

ABSTRACT This study aimed to determine and spatialize the soil quality index (SQI), in relation to chemical and physical attributes, and evaluate its use in the payment for environmental services in the Sub-Basin of Posses, Extrema-MG, Brazil, which represents the Atlantic Forest Biome. SQI values were influenced by both the replacement of native forests by stands of eucalyptus and by pastures and annual crops, reflecting in the reduction of soil quality in the sampled layer in the evaluated systems. The spatialization of SQI showed values ranging from 0.40 to 0.80, with some specific areas with high values and others with values above 1.00 (native forest). The reforestation with eucalyptus conditioned most of the soils with low chemical and physical deterioration, due to accumulation of litter. The lowest SQI values are associated with pastures. SQI adjusted to the exponential model, which allowed the use of ordinary Kriging. The SQI has a great potential of use in the payment to farmers who provide services of soil and water conservation.


2004 ◽  
Vol 4 (3) ◽  
pp. 201-204 ◽  
Author(s):  
Giancarlo Barbiroli ◽  
Giovanni Casalicchio ◽  
Andrea Raggi

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1426
Author(s):  
Ahmed S. Abuzaid ◽  
Mohamed A. E. AbdelRahman ◽  
Mohamed E. Fadl ◽  
Antonio Scopa

Modelling land degradation vulnerability (LDV) in the newly-reclaimed desert oases is a key factor for sustainable agricultural production. In the present work, a trial for usingremote sensing data, GIS tools, and Analytic Hierarchy Process (AHP) was conducted for modeling and evaluating LDV. The model was then applied within 144,566 ha in Farafra, an inland hyper-arid Western Desert Oases in Egypt. Data collected from climate conditions, geological maps, remote sensing imageries, field observations, and laboratory analyses were conducted and subjected to AHP to develop six indices. They included geology index (GI), topographic quality index (TQI), physical soil quality index (PSQI), chemical soil quality index (CSQI), wind erosion quality index (WEQI), and vegetation quality index (VQI). Weights derived from the AHP showed that the effective drivers of LDV in the studied area were as follows: CSQI (0.30) > PSQI (0.29) > VQI (0.17) > TQI (0.12) > GI (0.07) > WEQI (0.05). The LDV map indicated that nearly 85% of the total area was prone to moderate degradation risks, 11% was prone to high risks, while less than 1% was prone to low risks. The consistency ratio (CR) for all studied parameters and indices were less than 0.1, demonstrating the high accuracy of the AHP. The results of the cross-validation demonstrated that the performance of ordinary kriging models (spherical, exponential, and Gaussian) was suitable and reliable for predicting and mapping soil properties. Integrated use of remote sensing data, GIS, and AHP would provide an effective methodology for predicting LDV in desert oases, by which proper management strategies could be adopted to achieve sustainable food security.


2021 ◽  
Vol 125 ◽  
pp. 107580
Author(s):  
Wuping Huang ◽  
Mingming Zong ◽  
Zexin Fan ◽  
Yuan Feng ◽  
Shiyu Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document