scholarly journals Endoparasites of wild animals from three biomes in the State of Mato Grosso, Brazil

2016 ◽  
Vol 68 (3) ◽  
pp. 571-578 ◽  
Author(s):  
D.G.S. Ramos ◽  
A.R.G.L.O. Santos ◽  
L.C. Freitas ◽  
S.H.R. Correa ◽  
G.V. Kempe ◽  
...  

ABSTRACT The population of wild animals is regulated by many biotic and abiotic factors, and parasites are a biotic factor that affects the dynamic and density of host populations. From 2002 to 2014, 62 wild animals from the biomes Pantanal, Amazon, and "Cerrado" (or Savanna), which died in attendance in the veterinary hospital or have been road-killed, underwent necropsy for parasitological examination. Overall, 36 species of parasites were identified from 24 host species. Among the parasites, the most prevalent order was Oxyurida (29.1%), followed by Strongylida (20.9%), Spirurida (19.4%), Ascaridida (16.2%), Pentastomida (3.2%), Echinostomida (3.2%), Gygantorhynchia (3.2%), Rhabditida (1.6%), Plagiorchiida (1.6%), and Monilimorfida (1.6%), especially nematodes, which have more biotic potential and is more easily adapted to the environment than other classes. The occurrence of endoparasites was observed more frequently in endothermic than ectothermic animals, and herein is reported eleven new host occurrences for endoparasites in wild animals. The study has contributed to the knowledge on the biodiversity of parasites in wild animals from three biomes in central-western Brazil.

2009 ◽  
Vol 166 (3-4) ◽  
pp. 262-267 ◽  
Author(s):  
Domenico Otranto ◽  
Filipe Dantas-Torres ◽  
Egidio Mallia ◽  
Peter M. DiGeronimo ◽  
Emanuele Brianti ◽  
...  

2011 ◽  
Vol 87 (1) ◽  
pp. 12-16 ◽  
Author(s):  
R.W. Ávila ◽  
R.J. da Silva

AbstractNinety-five specimens from 13 species of lizard collected during a herpetofaunal monitoring programme of the Faxinal II power plant, municipality of Aripuanã, state of Mato Grosso, Brazil (southern Amazon region) were examined for helminths. A total of 21 helminth species (16 Nematoda, 1 Cestoda and 4 Trematoda) were recovered, with an overall prevalence of 67.37%. Seventeen new host records and seven new locality records are reported. A low number of specialists and core helminth species were found. Lizard body size was positively correlated with both the total number of helminth species and individuals. Active foragers exhibited higher helminth diversity. However, sit-and-wait foragers, especially Plica plica, had similar diversity values as active foragers and harboured more helminth species. The degree of similarity in helminth fauna was higher among closely related host species.


2018 ◽  
Vol 44 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Subrata Nath Bhowmik ◽  
Gulab Singh Yadav ◽  
Mrinmay Datta

Rhodes grasses (Chloris gayana Kunth) inoculated with Glomus mosseae were grown under the influence of Azospirillum (biotic factor), IAA (abiotic factor) and Hoagland’s solution (abiotic factor). The effectiveness of each factor was evaluated by measuring mycorrhizal root colonization and spore numbers. The pot culture experiment was carried out under polyhouse condition and observations were recorded at 45, 90 and 120 days of plant growth. The harvest date finely influenced the size of mycorrhizal inoculum. But, all biotic and abiotic factors had a greater influence on root colonization and spore multiplication than harvest time. The agents on application in conjunction favourably enhanced root infection and spore multiplication as compared to their solo treatments, with Azospirillum + Hoagland’s solution application posing to be the best. This not only stimulated mycorrhizal development, but also accelerated the root growth.


2021 ◽  
Vol 22 (4) ◽  
pp. 2183
Author(s):  
Nurhani Mat Razali ◽  
Siti Norvahida Hisham ◽  
Ilakiya Sharanee Kumar ◽  
Rohit Nandan Shukla ◽  
Melvin Lee ◽  
...  

Proper management of agricultural disease is important to ensure sustainable food security. Staple food crops like rice, wheat, cereals, and other cash crops hold great export value for countries. Ensuring proper supply is critical; hence any biotic or abiotic factors contributing to the shortfall in yield of these crops should be alleviated. Rhizoctonia solani is a major biotic factor that results in yield losses in many agriculturally important crops. This paper focuses on genome informatics of our Malaysian Draft R. solani AG1-IA, and the comparative genomics (inter- and intra- AG) with four AGs including China AG1-IA (AG1-IA_KB317705.1), AG1-IB, AG3, and AG8. The genomic content of repeat elements, transposable elements (TEs), syntenic genomic blocks, functions of protein-coding genes as well as core orthologous genic information that underlies R. solani’s pathogenicity strategy were investigated. Our analyses show that all studied AGs have low content and varying profiles of TEs. All AGs were dominant for Class I TE, much like other basidiomycete pathogens. All AGs demonstrate dominance in Glycoside Hydrolase protein-coding gene assignments suggesting its importance in infiltration and infection of host. Our profiling also provides a basis for further investigation on lack of correlation observed between number of pathogenicity and enzyme-related genes with host range. Despite being grouped within the same AG with China AG1-IA, our Draft AG1-IA exhibits differences in terms of protein-coding gene proportions and classifications. This implies that strains from similar AG do not necessarily have to retain similar proportions and classification of TE but must have the necessary arsenal to enable successful infiltration and colonization of host. In a larger perspective, all the studied AGs essentially share core genes that are generally involved in adhesion, penetration, and host colonization. However, the different infiltration strategies will depend on the level of host resilience where this is clearly exhibited by the gene sets encoded for the process of infiltration, infection, and protection from host.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Omri Nahor ◽  
Cristina F. Morales-Reyes ◽  
Gianmaria Califano ◽  
Thomas Wichard ◽  
Alexander Golberg ◽  
...  

Abstract Controlling the life cycle of the green macroalga Ulva (Chlorophyta) is essential to maintain its efficient aquaculture. A fundamental shift in cultivation occurs by transforming the thallus cells into gametangia and sporangia (sporulation), with the subsequent release of gametes and zoids. Sporulation occurrence depends on algal age and abiotic stimuli and is controlled by sporulation inhibitors. Thus, quantification of sporulation intensity is critical for identifying the biotic and abiotic factors that influence the transition to reproductive growth. Here, we propose to determine the sporulation index by measuring the number of released gametes using flow cytometry, in proportion to the total number of thallus cells present before the occurrence of the sporulation event. The flow cytometric measurements were validated by manually counting the number of released gametes. We observed a variation in the autofluorescence levels of the gametes which were released from the gametangia. High autofluorescence level correlated to phototactically active behaviour of the gametes. As autofluorescence levels varied between different groups of gametes related to their mobility, flow cytometry can also determine the physiological status of the gametes used as feedstock in seaweed cultivation.


Sign in / Sign up

Export Citation Format

Share Document