scholarly journals Rapid mass multiplication of Glomus mosseae inoculum as influenced by some biotic and abiotic factors

2018 ◽  
Vol 44 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Subrata Nath Bhowmik ◽  
Gulab Singh Yadav ◽  
Mrinmay Datta

Rhodes grasses (Chloris gayana Kunth) inoculated with Glomus mosseae were grown under the influence of Azospirillum (biotic factor), IAA (abiotic factor) and Hoagland’s solution (abiotic factor). The effectiveness of each factor was evaluated by measuring mycorrhizal root colonization and spore numbers. The pot culture experiment was carried out under polyhouse condition and observations were recorded at 45, 90 and 120 days of plant growth. The harvest date finely influenced the size of mycorrhizal inoculum. But, all biotic and abiotic factors had a greater influence on root colonization and spore multiplication than harvest time. The agents on application in conjunction favourably enhanced root infection and spore multiplication as compared to their solo treatments, with Azospirillum + Hoagland’s solution application posing to be the best. This not only stimulated mycorrhizal development, but also accelerated the root growth.

2016 ◽  
Vol 68 (3) ◽  
pp. 571-578 ◽  
Author(s):  
D.G.S. Ramos ◽  
A.R.G.L.O. Santos ◽  
L.C. Freitas ◽  
S.H.R. Correa ◽  
G.V. Kempe ◽  
...  

ABSTRACT The population of wild animals is regulated by many biotic and abiotic factors, and parasites are a biotic factor that affects the dynamic and density of host populations. From 2002 to 2014, 62 wild animals from the biomes Pantanal, Amazon, and "Cerrado" (or Savanna), which died in attendance in the veterinary hospital or have been road-killed, underwent necropsy for parasitological examination. Overall, 36 species of parasites were identified from 24 host species. Among the parasites, the most prevalent order was Oxyurida (29.1%), followed by Strongylida (20.9%), Spirurida (19.4%), Ascaridida (16.2%), Pentastomida (3.2%), Echinostomida (3.2%), Gygantorhynchia (3.2%), Rhabditida (1.6%), Plagiorchiida (1.6%), and Monilimorfida (1.6%), especially nematodes, which have more biotic potential and is more easily adapted to the environment than other classes. The occurrence of endoparasites was observed more frequently in endothermic than ectothermic animals, and herein is reported eleven new host occurrences for endoparasites in wild animals. The study has contributed to the knowledge on the biodiversity of parasites in wild animals from three biomes in central-western Brazil.


2016 ◽  
Vol 40 (3) ◽  
pp. 431-449 ◽  
Author(s):  
Philipp Goebes ◽  
Karsten Schmidt ◽  
Werner Härdtle ◽  
Steffen Seitz ◽  
Felix Stumpf ◽  
...  

Below vegetation, throughfall kinetic energy (TKE) is an important factor to express the potential of rainfall to detach soil particles and thus for predicting soil erosion rates. TKE is affected by many biotic (e.g. tree height, leaf area index) and abiotic (e.g. throughfall amount) factors because of changes in rain drop size and velocity. However, studies modelling TKE with a high number of those factors are lacking. This study presents a new approach to model TKE. We used 20 biotic and abiotic factors to evaluate thresholds of those factors that can mitigate TKE and thus decrease soil erosion. Using these thresholds, an optimal set of biotic and abiotic factors was identified to minimize TKE. The model approach combined recursive feature elimination, random forest (RF) variable importance and classification and regression trees (CARTs). TKE was determined using 1405 splash cup measurements during five rainfall events in a subtropical Chinese tree plantation with five-year-old trees in 2013. Our results showed that leaf area, tree height, leaf area index and crown area are the most prominent vegetation traits to model TKE. To reduce TKE, the optimal set of biotic and abiotic factors was a leaf area lower than 6700 mm2, a tree height lower than 290 cm combined with a crown base height lower than 60 cm, a leaf area index smaller than 1, more than 47 branches per tree and using single tree species neighbourhoods. Rainfall characteristics, such as amount and duration, further classified high or low TKE. These findings are important for the establishment of forest plantations that aim to minimize soil erosion in young succession stages using TKE modelling.


2020 ◽  
Author(s):  
Yafeng Zhang ◽  
Xinping Wang ◽  
Yanxia Pan ◽  
Rui Hu

<p>Stemflow production has been reported to be influenced by a suite of biotic and abiotic factors, and those factors would be quite different considering local and global scales. Although the number of published stemflow studies showed a steady increasing trend in recent years, the relative contributions of biotic and abiotic factors to stemflow production were still largely unclear due to the large number of influencing factors and the complex interactions among those factors. Here we present stemflow results conducted from both from local scale and global scale: (1) stemflow of nine xerophytic shrubs of Caragana korshinskii were measured in nearly nine growing seasons from 2010 to 2018 within a desert area of northern China, accompanying with observing on six biotic variables (shrub morphological attributes) and ten abiotic variables (meteorological conditions); (2) a global synthesis of stemflow production results (stemflow percentage was reported) derived from Web of Science for more than 200 peer-reviewed papers published in the last 50 years (1970-2019), and ten most reported biotic factors (vegetation life form, phenology, leaf form, bark form, community density, community age, vegetation height, diameter at breast height, leaf area index, stemflow measuring scale) and four abiotic factors (climate types, mean annual precipitation, elevation, mean annual temperature) were considered. We performed a machine learning method (boosted regression trees) to evaluate the relative contribution of each biotic and abiotic factor to stemflow percentage, and partial dependence plots were presented to visualize the effects of individual explanatory variables on stemflow percentage, respectively.</p>


2021 ◽  
Vol 22 (4) ◽  
pp. 2183
Author(s):  
Nurhani Mat Razali ◽  
Siti Norvahida Hisham ◽  
Ilakiya Sharanee Kumar ◽  
Rohit Nandan Shukla ◽  
Melvin Lee ◽  
...  

Proper management of agricultural disease is important to ensure sustainable food security. Staple food crops like rice, wheat, cereals, and other cash crops hold great export value for countries. Ensuring proper supply is critical; hence any biotic or abiotic factors contributing to the shortfall in yield of these crops should be alleviated. Rhizoctonia solani is a major biotic factor that results in yield losses in many agriculturally important crops. This paper focuses on genome informatics of our Malaysian Draft R. solani AG1-IA, and the comparative genomics (inter- and intra- AG) with four AGs including China AG1-IA (AG1-IA_KB317705.1), AG1-IB, AG3, and AG8. The genomic content of repeat elements, transposable elements (TEs), syntenic genomic blocks, functions of protein-coding genes as well as core orthologous genic information that underlies R. solani’s pathogenicity strategy were investigated. Our analyses show that all studied AGs have low content and varying profiles of TEs. All AGs were dominant for Class I TE, much like other basidiomycete pathogens. All AGs demonstrate dominance in Glycoside Hydrolase protein-coding gene assignments suggesting its importance in infiltration and infection of host. Our profiling also provides a basis for further investigation on lack of correlation observed between number of pathogenicity and enzyme-related genes with host range. Despite being grouped within the same AG with China AG1-IA, our Draft AG1-IA exhibits differences in terms of protein-coding gene proportions and classifications. This implies that strains from similar AG do not necessarily have to retain similar proportions and classification of TE but must have the necessary arsenal to enable successful infiltration and colonization of host. In a larger perspective, all the studied AGs essentially share core genes that are generally involved in adhesion, penetration, and host colonization. However, the different infiltration strategies will depend on the level of host resilience where this is clearly exhibited by the gene sets encoded for the process of infiltration, infection, and protection from host.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Omri Nahor ◽  
Cristina F. Morales-Reyes ◽  
Gianmaria Califano ◽  
Thomas Wichard ◽  
Alexander Golberg ◽  
...  

Abstract Controlling the life cycle of the green macroalga Ulva (Chlorophyta) is essential to maintain its efficient aquaculture. A fundamental shift in cultivation occurs by transforming the thallus cells into gametangia and sporangia (sporulation), with the subsequent release of gametes and zoids. Sporulation occurrence depends on algal age and abiotic stimuli and is controlled by sporulation inhibitors. Thus, quantification of sporulation intensity is critical for identifying the biotic and abiotic factors that influence the transition to reproductive growth. Here, we propose to determine the sporulation index by measuring the number of released gametes using flow cytometry, in proportion to the total number of thallus cells present before the occurrence of the sporulation event. The flow cytometric measurements were validated by manually counting the number of released gametes. We observed a variation in the autofluorescence levels of the gametes which were released from the gametangia. High autofluorescence level correlated to phototactically active behaviour of the gametes. As autofluorescence levels varied between different groups of gametes related to their mobility, flow cytometry can also determine the physiological status of the gametes used as feedstock in seaweed cultivation.


Sign in / Sign up

Export Citation Format

Share Document