scholarly journals Comparative and phylogenetic analyses of Swertia L. (Gentianaceae) medicinal plants (from Qinghai, China) based on complete chloroplast genomes

2022 ◽  
Vol 45 (1) ◽  
Author(s):  
Xin Xu ◽  
Jinping Li ◽  
Ran Chu ◽  
Mengjie Luan ◽  
Hongyu Wang ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 744
Author(s):  
Yunyan Zhang ◽  
Yongjing Tian ◽  
David Y. P. Tng ◽  
Jingbo Zhou ◽  
Yuntian Zhang ◽  
...  

Litsea Lam. is an ecological and economic important genus of the “core Lauraceae” group in the Lauraceae. The few studies to date on the comparative chloroplast genomics and phylogenomics of Litsea have been conducted as part of other studies on the Lauraceae. Here, we sequenced the whole chloroplast genome sequence of Litsea auriculata, an endangered tree endemic to eastern China, and compared this with previously published chloroplast genome sequences of 11 other Litsea species. The chloroplast genomes of the 12 Litsea species ranged from 152,132 (L. szemaois) to 154,011 bp (L. garrettii) and exhibited a typical quadripartite structure with conserved genome arrangement and content, with length variations in the inverted repeat regions (IRs). No codon usage preferences were detected within the 30 codons used in the chloroplast genomes, indicating a conserved evolution model for the genus. Ten intergenic spacers (psbE–petL, trnH–psbA, petA–psbJ, ndhF–rpl32, ycf4–cemA, rpl32–trnL, ndhG–ndhI, psbC–trnS, trnE–trnT, and psbM–trnD) and five protein coding genes (ndhD, matK, ccsA, ycf1, and ndhF) were identified as divergence hotspot regions and DNA barcodes of Litsea species. In total, 876 chloroplast microsatellites were located within the 12 chloroplast genomes. Phylogenetic analyses conducted using the 51 additional complete chloroplast genomes of “core Lauraceae” species demonstrated that the 12 Litsea species grouped into four sub-clades within the Laurus-Neolitsea clade, and that Litsea is polyphyletic and closely related to the genera Lindera and Laurus. Our phylogeny strongly supported the monophyly of the following three clades (Laurus–Neolitsea, Cinnamomum–Ocotea, and Machilus–Persea) among the above investigated “core Lauraceae” species. Overall, our study highlighted the taxonomic utility of chloroplast genomes in Litsea, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of L. auriculata and other Litsea species.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiheng Wang ◽  
Sheng Wang ◽  
Yanlei Liu ◽  
Qingjun Yuan ◽  
Jiahui Sun ◽  
...  

Abstract Background Atractylodes DC is the basic original plant of the widely used herbal medicines “Baizhu” and “Cangzhu” and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In order to solve these question, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing. Results The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42–47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. Conclusions Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiawei Zhou ◽  
Shuo Zhang ◽  
Jie Wang ◽  
Hongmei Shen ◽  
Bin Ai ◽  
...  

AbstractThe chloroplast is one of two organelles containing a separate genome that codes for essential and distinct cellular functions such as photosynthesis. Given the importance of chloroplasts in plant metabolism, the genomic architecture and gene content have been strongly conserved through long periods of time and as such are useful molecular tools for evolutionary inferences. At present, complete chloroplast genomes from over 4000 species have been deposited into publicly accessible databases. Despite the large number of complete chloroplast genomes, comprehensive analyses regarding genome architecture and gene content have not been conducted for many lineages with complete species sampling. In this study, we employed the genus Populus to assess how more comprehensively sampled chloroplast genome analyses can be used in understanding chloroplast evolution in a broadly studied lineage of angiosperms. We conducted comparative analyses across Populus in order to elucidate variation in key genome features such as genome size, gene number, gene content, repeat type and number, SSR (Simple Sequence Repeat) abundance, and boundary positioning between the four main units of the genome. We found that some genome annotations were variable across the genus owing in part from errors in assembly or data checking and from this provided corrected annotations. We also employed complete chloroplast genomes for phylogenetic analyses including the dating of divergence times throughout the genus. Lastly, we utilized re-sequencing data to describe the variations of pan-chloroplast genomes at the population level for P. euphratica. The analyses used in this paper provide a blueprint for the types of analyses that can be conducted with publicly available chloroplast genomes as well as methods for building upon existing datasets to improve evolutionary inference.


Phytotaxa ◽  
2021 ◽  
Vol 500 (3) ◽  
pp. 241-247
Author(s):  
HUI-FENG WANG ◽  
ZHENG-FENG WANG ◽  
QIAO-MEI QIN ◽  
HONG-LIN CAO ◽  
XIAO-MING GUO

Tigridiopalma longmenensis, a new species from Guangdong, China, is described. This species differs from its ally, T. magnifica, by the polychasium consisting of scorpioid cymes, hypanthium with carinas on angles, and longer stamens with a conspicuously white or pink spur at the connective base of anther. A diagnosis and a distribution map of the two species are also provided. The complete chloroplast genome of T. longmenensis was reported here. Phylogenetic analyses based on complete chloroplast genomes from T. longmenensis and other 15 Melastomataceae species indicated that T. longmenensis is sister to T. magnifica. The discovery of T. longmenensis terminates Tigridiopalma as a monotypic genus.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1143 ◽  
Author(s):  
Hang Ran ◽  
Yanyan Liu ◽  
Cui Wu ◽  
Yanan Cao

Phylogenetic analyses of complete chloroplast genome sequences have yielded significant improvements in our understanding of relationships in the woody flowering genus Viburnum (Adoxaceae, Dipsacales); however, these relationships were evaluated focusing only on Viburnum species within Central and South America and Southeast Asia. By contrast, despite being a hotspot of Viburnum diversity, phylogenetic relationships of Viburnum species in China are less well known. Here, we characterized the complete chloroplast (cp) genomes of 21 Viburnum species endemic to China, as well as three Sambucus species. These 24 plastomes were highly conserved in genomic structure, gene order and content, also when compared with other Adoxaceae. The identified repeat sequences, simple sequence repeats (SSRs) and highly variable plastid regions will provide potentially valuable genetic resources for further population genetics and phylogeographic studies on Viburnum and Sambucus. Consistent with previous combined phylogenetic analyses of 113 Viburnum species, our phylogenomic analyses based on the complete cp genome sequence dataset confirmed the sister relationship between Viburnum and the Sambucus-Adoxa-Tetradoxa-Sinadoxa group, the monophyly of four recognized sections in Flora of China (i.e., Viburnum sect. Tinus, Viburnum sect. Solenotinus, Viburnum sect. Viburnum and Viburnum sect. Pseudotinus) and the nonmonophyly of Viburnum sect. Odontotinus and Viburnum sect. Megalotinus. Additionally, our study confirmed the sister relationships between the clade Valvatotinus and Viburnum sect. Pseudotinus, as well as between Viburnum sect. Opulus and the Odontotinus-Megalotinus group. Overall, our results clearly document the power of the complete cp genomes in improving phylogenetic resolution, and will contribute to a better understanding of plastome evolution in Chinese Adoxaceae.


Genome ◽  
2020 ◽  
Vol 63 (7) ◽  
pp. 337-348
Author(s):  
Guanglong Hu ◽  
Lili Cheng ◽  
Wugang Huang ◽  
Qingchang Cao ◽  
Lei Zhou ◽  
...  

Coryloideae is a subfamily in the family Betulaceae consisting of four extant genera: Carpinus, Corylus, Ostrya, and Ostryopsis. We sequenced the plastomes of six species of Corylus and one species of Ostryopsis for comparative and phylogenetic analyses. The plastomes are 159–160 kb long and possess typical quadripartite cp architecture. The plastomes show moderate divergence and conserved arrangement. Five mutational hotspots were identified by comparing the plastomes of seven species of Coryloideae: trnG-atpA, trnF-ndhJ, accD-psaI, ndhF-ccsA, and ycf1. We assembled the most complete phylogenomic tree for the family Betulaceae using 68 plastomes. Our cp genomic sequence phylogenetic analyses placed Carpinus, Ostrya, and Ostryopsis in a clade together and left Corylus in a separate clade. Within the genus Corylus, these analyses indicate the existence of five subclades reflecting the phylogeographical relationships among the species. The data offer significant genetic information for the identification of species of the Coryloideae, taxonomic and phylogenetic studies, and molecular breeding.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wenbin Xu ◽  
Boshun Xia ◽  
Xinwei Li

AbstractThe six pinnate-leaved species are a very particular group in the genus Primula. In the present paper, we sequenced, assembled and annotated the chloroplast genomes of five of them (P. cicutarrifolia, P. hubeiensis, P. jiugongshanensis, P. merrilliana, P. ranunculoides). The five chloroplast genomes ranged from ~ 150 to 152 kb, containing 113 genes (four ribosomal RNA genes, 29 tRNA genes and 80 protein-coding genes). The six pinnate-leaved species exhibited synteny of gene order and possessed similar IR boundary regions in chloroplast genomes. The gene accD was pseudogenized in P. filchnerae. In the chloroplast genomes of the six pinnate-leaved Primula species, SSRs, repeating sequences and divergence hotspots were identified; ycf1 and trnH-psbA were the most variable markers among CDSs and noncoding sequences, respectively. Phylogenetic analyses showed that the six Primula species were separated into two distant clades: one was formed by P. filchnerae and P. sinensis and the other clade was consisting of two subclades, one formed by P. hubeiensis and P. ranunculoides, the other by P. merrilliana, P. cicutarrifolia and P. jiugongshanensis. P. hubeiensis was closely related with P. ranunculoides and therefore it should be placed into Sect. Ranunculoides. P. cicutarrifolia did not group first with P. ranunculoides but with P. merrilliana, although the former two were once united in one species, our results supported the separation of P. ranunculoides from P. cicutarrifolia as one distinct species.


Sign in / Sign up

Export Citation Format

Share Document