scholarly journals Temporal stability of soil moisture in an experimental watershed in the Pernambuco semi-arid region

Author(s):  
Valdemir P. Silva Junior ◽  
Abelardo A. A. Montenegro ◽  
Rogério O. de Melo

ABSTRACT Soil moisture estimation is very important in decision making regarding agricultural practices and investigations in hydrology. The aim of the study was to evaluate surface soil moisture temporal stability under two cover crop conditions in an experimental watershed in the Brazilian semi-arid region, aiming to identify stable points, thus reducing monitoring costs and highlighting the importance of temporal stability in a watershed. Fourty five soil moisture monitoring campaigns in the layers of 0-0.10 and 0.10-0.20 m were conducted using a capacitance probe (Diviner – 2000®) during the period from 10/07/2010 to 03/25/2014, with soil cover under native bushy vegetation and degraded pasture, predominantly Brachiaria decumbens. Temporal stability was evaluated through the mean relative difference technique. The point located at the middle of a slope under pasture and bushes was the most stable, with determination coefficient of 90 and 92% for both layers.

2006 ◽  
Vol 05 (3) ◽  
pp. 8-20
Author(s):  
José Carlos Oliveira SANTOS ◽  
Lionete Dantas NUNES ◽  
Sylvia Berenice NÓBREGA ◽  
Dantas José Pires PUZINSKI ◽  
Antonio Gouveia SOUZA

A thermal analysis has been applied to characterization of food and food products. Taking into account the problems of desertification and agricultural practices able to provide income to the population at the semi-arid region of Northeastern Brazil, this work presents the results of the chemical, thermal and kinetic characterization by thermogravimetry and differential scanning calorimetry of the seed derivatives of favelone (cnidoscolus quercifolius), aiming at the application of these materials as an alternative of food source for animals and for the human population at this brazilian region.


2018 ◽  
Vol 10 (12) ◽  
pp. 1953 ◽  
Author(s):  
Safa Bousbih ◽  
Mehrez Zribi ◽  
Mohammad El Hajj ◽  
Nicolas Baghdadi ◽  
Zohra Lili-Chabaane ◽  
...  

This paper presents a technique for the mapping of soil moisture and irrigation, at the scale of agricultural fields, based on the synergistic interpretation of multi-temporal optical and Synthetic Aperture Radar (SAR) data (Sentinel-2 and Sentinel-1). The Kairouan plain, a semi-arid region in central Tunisia (North Africa), was selected as a test area for this study. Firstly, an algorithm for the direct inversion of the Water Cloud Model (WCM) was developed for the spatialization of the soil water content between 2015 and 2017. The soil moisture retrieved from these observations was first validated using ground measurements, recorded over 20 reference fields of cereal crops. A second method, based on the use of neural networks, was also used to confirm the initial validation. The results reported here show that the soil moisture products retrieved from remotely sensed data are accurate, with a Root Mean Square Error (RMSE) of less than 5% between the two moisture products. In addition, the analysis of soil moisture and Normalized Difference Vegetation Index (NDVI) products over cultivated fields, as a function of time, led to the classification of irrigated and rainfed areas on the Kairouan plain, and to the production of irrigation maps at the scale of individual fields. This classification is based on a decision tree approach, using a combination of various statistical indices of soil moisture and NDVI time series. The resulting irrigation maps were validated using reference fields within the study site. The best results were obtained with classifications based on soil moisture indices only, with an accuracy of 77%.


CATENA ◽  
2020 ◽  
Vol 188 ◽  
pp. 104457 ◽  
Author(s):  
Maria Gabriela de Queiroz ◽  
Thieres George Freire da Silva ◽  
Sérgio Zolnier ◽  
Alexandre Maniçoba da Rosa Ferraz Jardim ◽  
Carlos André Alves de Souza ◽  
...  

2019 ◽  
Vol 231 ◽  
pp. 111226 ◽  
Author(s):  
Ehsan Jalilvand ◽  
Masoud Tajrishy ◽  
Sedigheh Alsadat Ghazi Zadeh Hashemi ◽  
Luca Brocca

2019 ◽  
Vol 8 (4) ◽  
pp. 12457-12460

The Water Scarcity is a prominent feature in Arid and Semi-Arid region. Soil moisture content is significant factor in deciding vegetation growth and also affects the performance of any water harvesting system in place. This paper evaluates the interrelationship of Soil properties with Soil Moisture content. The study covers about 13 soil Samples from Single Watershed. The soil properties covered in the study are Conductivity, pH, Bulk Density, Dry Density, Specific gravity, organic content, void ratio, and Moisture Content. Multiple linear regression analysis was done to determine significance of each soil properties for soil moisture content as individual and as whole. Modelling was done based on soil characteristics to predict Soil Moisture. Principal Component Analysis was performed to identify most significant soil properties responsible for variation of prediction of Soil Moisture content. The Correlation between location topography and Moisture Content was obtained through Cluster Analysis.


2021 ◽  
Vol 13 (21) ◽  
pp. 4246
Author(s):  
Zhenzong Wu ◽  
Jian Bi ◽  
Yifei Gao

The dynamics of terrestrial vegetation have changed a lot due to climate change and direct human interference. Monitoring these changes and understanding the mechanisms driving them are important for better understanding and projecting the Earth system. Here, we assessed the dynamics of vegetation in a semi-arid region of Northwest China for the years from 2000 to 2019 through satellite remote sensing using Vegetation Index (VI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS), and analyzed the interannual covariation between vegetation and three climatic factors—air temperature, precipitation, and vapor pressure deficit (VPD)—at nine meteorological stations. The main findings of this research are: (1) herbaceous land greened up much more than forests (2.85%/year vs. 1.26%/year) in this semi-arid region; (2) the magnitudes of green-up for croplands and grasslands were very similar, suggesting that agricultural practices, such as fertilization and irrigation, might have contributed little to vegetation green-up in this semi-arid region; and (3) the interannual dynamics of vegetation at high altitudes in this region correlate little with temperature, precipitation, or VPD, suggesting that factors other than temperature and moisture control the interannual vegetation dynamics there.


Sign in / Sign up

Export Citation Format

Share Document