scholarly journals Hydraulic performance of drippers with different waters and lateral line slopes

Author(s):  
Flavio D. Szekut ◽  
Carlos A. V. de Azevedo ◽  
Marcio A. V. Boas ◽  
Thiago Zuculotto

ABSTRACT The operation of drip lateral lines is affected by the topography of the irrigated area and represent, depending on the type of water applied, changes in the discharge characteristics of the emitters. The research had as objective to evaluate the hydraulic performance of built-in labyrinth drippers, non-pressure compensating, with different waters and slopes of the lateral lines. The experiment was carried out on a test bench and consisted of a randomized block design with split-plots: first factor with four types of water, representing the plots: clean water, water with fertilizers, cassava starch wastewater and poultry slaughterhouse wastewater; second factor with slopes of the lateral line, constituting the sub-plots: upslope, level and downslope. The experimental statistics consisted of analysis of variance with subsequent simple-effect analysis and Tukey test at 0.05 probability level to compare the means of dripper flow rates. Quality control statistics was performed using Shewhart’s control charts with interpretations based on upper and lower control limits, as well as non-random pattern recognition. Waters of inferior quality modified the flow rates of the tested drippers regardless of the variation of internal pressure caused by the slope of the lateral line. Water with fertilizer (300 mg L-1) obtained the best conditions of temporal irrigation quality verified by the control charts. Irrigation with poultry slaughterhouse wastewater obtained the same flow rates in all slopes. Cassava starch wastewater caused the lowest flow rates among all the waters.

2014 ◽  
Vol 8 ◽  
pp. 167-172 ◽  
Author(s):  
Nitinard Chaleomrum ◽  
Kannika Chookietwattana ◽  
Somchai Dararat

2015 ◽  
Vol 172 ◽  
pp. 725-730 ◽  
Author(s):  
Ana Carolina Moura de Sena Aquino ◽  
Mônia Stremel Azevedo ◽  
Deise Helena Baggio Ribeiro ◽  
Ana Carolina Oliveira Costa ◽  
Edna Regina Amante

Revista CERES ◽  
2018 ◽  
Vol 65 (5) ◽  
pp. 388-394
Author(s):  
Denise Palma ◽  
Julia Piechontcoski Fernandes ◽  
Marney Pascoli Cereda ◽  
Simone Damasceno Gomes

ABSTRACT Cassava processing wastewater has a low Volatile Acidity/Total Alkalinity ratio, low buffering capacity and became quickly acidified. In this trial, dolomitic limestone was used as an alkalizing agent in an anaerobic reactor to treat cassava starch wastewater. The dolomitic limestone contained 27% CaO and 23% MgO and granulometry between 24.5 and 38.1 mm. The average Chemical Oxygen Demand of the wastewater was 13331.30 mgO2 L-1, the organic loading rates (OLR) ranged from 1.23 to 16.43 gCOD L-1 d-1 and the hydraulic retention times ranged from 10.00 to 0.80 days. The results showed that the calcium concentrations increased in the reactor effluent and the magnesium concentrations decreased as the organic loading rates increased. Ca2+ and Mg2+ concentrations were approximately 5,000 and 5.05 times greater in the sludge than in the inoculum, respectively. The average pH, Total alcalinity, Volatile Acidity and Volatile Acidity/ Total alcalinity values were 6.69, 882.54 mgCaCO3 L-1, 221.55 mgCH3COOH L-1 and 0.22, respectively. The loss of limestone mass corresponded to only 2.51% of the initial mass, after 134 days of anaerobic reactor operation. Finally, it was concluded that the limestone effectively controlled acidification through the alkalinity increased in the system.


1993 ◽  
Vol 341 (1296) ◽  
pp. 113-127 ◽  

1. The receptor organs of the acoustico-lateralis system in fish respond in various ways to pressures and pressure gradients and provide the fish with information about external sources of vibration. 2. A fish’s movements will set up pressures and pressure gradients and this poses three questions, (i) Can a fish obtain useful information from self-generated pressures and pressure gradients? (ii) To what extent do self-generated pressures mask signals from external sources? (iii) Can interactions between external and self-generated pressures and gradients in the acoustico-lateralis system give patterns of activity from the receptor organs which have special significance? 3. In herring ( Clupea harengus L. ) and sprat ( Spratus sprattus (L.)) measurements have been made of dimensions of various parts of the acoustico-lateralis system particularly of the subcerebral perilymph canal which crosses the head between the lateral lines. 4. Self-generated pressures produced by lateral movements of the head are antisymmetric, i.e. equal and opposite in sign on the left and right sides of the head. They oppose the accelerations of the head that produce them. In contrast, external sources give pressures that are largely symmetric. Any pressure gradients they give will accelerate the fish and the surrounding water together and any net pressure gradients will be small and so will any flows through the subcerebral perilymph canal. 5. Flows of liquid between the lateral lines across the lateral-recess membranes have been measured at various frequencies for pressure gradients applied across the head. Between 5 and 200 Hz the velocity of flow per unit pressure does not vary by more than than a factor of 2. At low frequencies the absolute values of flow are very much larger (more than 50 times) than those found for equally large symmetrically applied pressures (as from an external source) due to flow into the elastic gas containing bullae. 6. It is calculated that a net pressure difference (at optimum frequency) across the head of only 0.008 Pa will reach threshold for the lateral line neuromast nearest the lateral recess and one of 0.02 Pa for that under the eye. The responses of these neuromasts are expected to saturate and provide little information when the pressure differences across the head exceed 6 to 18 Pa. The pressures given by the swimming fish are discussed in the light of a theory advanced by Lighthill in the paper that follows this paper. With such antisymmetric pressures the direction of flow in the lateral-line canals will be towards the lateral recess on one side of the fish and away on the other and so differ from the situation found with an external source when flow at any instant will be either towards or away from the lateral recess on both sides of the head. 7. Antisymmetric pressures can produce large flows past the utricular maculae. However, at low frequencies flows across the maculae, on which their stimulation depends, will be small. We do not know the direction of these latter flows though they will be in opposite sense on the two sides of the head, again unlike the situation with an external source. 8. Calculations of impedances below 30 Hz show that the observed flows across the head are consistent with the dimensions and properties of the known structures. 9. There are major and systematic differences in the patterns of receptor organ stimulation between those expected from external sources and from a fish’s own movements. 10. Experiments on the red mullet ( Mullus surmuletus L.) showed that it too has a transverse channel connecting the right and left lateral-line systems. At low frequencies its properties resemble those of the subcerebral perilymph canal of the clupeid.


2017 ◽  
Vol 23 (6) ◽  
pp. 5810-5814 ◽  
Author(s):  
Totok Prasetyo ◽  
Siswo Sumardiono ◽  
Hapsoro Aruno Aji ◽  
Anggara Yudha Pratama

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
D. G. J. Detert Oude Weme ◽  
M. S. van der Schoot ◽  
N. P. Kruyt ◽  
E. J. J. van der Zijden

The effect of trimming of radial impellers on the hydraulic performance of low specific-speed centrifugal pumps is studied. Prediction methods from literature, together with a new prediction method that is based on the simplified description of the flow field in the impeller, are used to quantify the effect of trimming on the hydraulic performance. The predictions by these methods are compared to measured effects of trimming on the hydraulic performance for an extensive set of pumps for flow rates in the range of 80% to 110% of the best efficiency point. Of the considered methods, the new prediction method is more accurate (even for a large impeller trim of 12%) than the considered methods from literature. The new method generally overestimates the reduction in the pump head after trimming, and hence results less often in impeller trims that are too large when the method is used to determine the amount of trimming that is necessary in order to attain a specified head.


2017 ◽  
Vol 228 (7) ◽  
Author(s):  
Jordana Dorca dos Santos ◽  
Márcia Teresinha Veit ◽  
Soraya Moreno Palácio ◽  
Gilberto da Cunha Gonçalves ◽  
Márcia Regina Fagundes-Klen

Author(s):  
Vijay Sahu ◽  
Jeet Raj ◽  
Sanket Kolambe ◽  
. Aman

A technical report was conducted for checking performance assessment of drip irrigation system which was used for cultivating tomato in premises of the Centre of Excellence Protected Cultivation, Raipur (Chhattisgarh). A uniformity coefficient was found for drip irrigation system which ranges from 73.2 % to 83.6%. The coefficient of variance varies between 0.0055 to 0.0068 for the measured discharges of four laterals laid in the field. It shows that there is the least variation between the obtained flow rates of different laterals under study. The application efficiency of four different lateral lines operating at a pressure of 1.25 kg/cm2 was calculated and it found to be more than 90.00 %, excluding lateral line (L2). Almost same amount of flow variation (8-9%) is found in lateral lines L1, L3 and L4, although Lateral line (L2) discharges 11.00 % more water among others. The maximum flow variation was found for the lateral line (L3) and the least flow variation was for the lateral line (L1). The distribution efficiency of all the laterals was found more than 97.45 %.


Sign in / Sign up

Export Citation Format

Share Document