scholarly journals Soil fertility and yield of ‘Paluma’ guava fertilized with phosphorus, cattle manure, and boron

Author(s):  
Gaudêncio P. dos Santos ◽  
Walter E. Pereira ◽  
Rosiane de L. S. de Lima ◽  
José F. de Brito Neto ◽  
Bruno de O. Dias ◽  
...  

ABSTRACT The low soil fertility associated with the lack of adequate irrigation management are factors that most limit crop production. Therefore, the study aimed to evaluate the chemical attributes of an Oxisol and the yield of ‘Paluma’ guava under irrigation with saline water and fertilized with phosphorus, cattle manure, and boron. The treatments were distributed in randomized blocks, with four repetitions and two plants per plot, including borders on the sides of the useful experimental area, arranged in a factorial scheme (5 × 2) + 1, referring to five phosphorus doses (0, 0.08, 0.16, 0.24 and 0.32 kg of P2O5 plant-1), two doses of cattle manure, 0 and 30 kg per plant and an additional treatment consisting of 0.16 kg of P2O5 plus 30 kg of cattle manure and 1.0 g of boron, using as source the borax. In the soil, pH, phosphorus, potassium, calcium, magnesium, and the cation exchange capacity were evaluated in the 0-20 cm and 20-40 cm layers. In plants, the average yield per hectare in two harvests was estimated. The pH decreased with phosphorus doses without cattle manure and in the treatment with boron in the 20-40 cm layer. The cation exchange capacity increased with the application of phosphorus doses associated with manure and decreased in both soil layers with boron. The macronutrients evaluated were not influenced by boron. Phosphorus doses associated with cattle manure increased yield, exceeding the average of 50 t ha-1 year-1 determined for ‘Paluma’ guava. In contrast, boron did not increased the yield.

2006 ◽  
Vol 63 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Zigomar Menezes de Souza ◽  
José Marques Júnior ◽  
Gener Tadeu Pereira ◽  
Diogo Mazza Barbieri

Soils with small variations in relief and under the same management system present differentiated spatial variabilities of their attributes. This variability is a function of soil position in the landscape, even if the relief has little expression. The aim of this work was to investigate the effects of relief shape and depth on spatial variability of soil chemical attributes in a Typic Hapludox cultivated with sugar cane at two landscape compartments. Soil samples were collected in the intercrossing points of a grid, in the traffic line, at 0-0.2 m and 0.6-0.8 m depths, comprising a set of 100 georeferenced points. The spatial variabilities of pH, P, K, Ca, Mg, cation exchange capacity and base saturation were quantified. Small relief shape variations lead to differentiated variability in soil chemical attributes as indicated by the dependence on pedoform found for chemical attributes at both 0-0.2 m and 0.6-0.8 m depths. Because of the higher variability, it is advisable to collect large number of samples in areas with concave and convex shapes. Combining relief shapes and geostatistics allows the determination of areas with different spatial variability for soil chemical attributes.


2012 ◽  
Vol 28 (5) ◽  
pp. 427-435 ◽  
Author(s):  
Jessica L. Deichmann ◽  
Catherine A. Toft ◽  
Peter M. Deichmann ◽  
Albertina P. Lima ◽  
G. Bruce Williamson

Abstract:Soil fertility and plant productivity are known to vary across the Amazon Basin partially as a function of geomorphology and age of soils. Using data on herpetofaunal abundance collected from 5 × 5 m and 6 × 6 m plots in mature tropical forests, we tested whether variation in community biomass of litter frogs and lizards across ten Neotropical sites could be explained by cation exchange capacity, primary productivity or stem turnover rate. About half of the variation in frog biomass (48%) could be attributed to stem turnover rate, while over two-thirds of the variation in lizard biomass (69%) was explained by primary productivity. Biomass variation in frogs resulted from variation in abundance and size, and abundance was related to cation exchange capacity (45% of variation explained), but size was not. Lizard biomass across sites varied mostly with individual lizard size, but not with abundance, and size was highly dependent on primary productivity (85% of variation explained). Soil fertility and plant productivity apparently affect secondary consumers like frogs and lizards through food webs, as biomass is transferred from plants to herbivorous arthropods to secondary consumers.


Author(s):  
Niken Puspita sari ◽  
Teguh Iman Santoso ◽  
Surip Mawardi

Soil fertility is one of the most important factors influencing plant growth and productivity and it depends on the availability and quantity of nutrients in the soil. To study soil fertility status of an area, a study on soil chemistry and physics has to be conducted. The aim of this study was to investigate soil fertility status of smallholding Arabica coffee farms based on altitude and shades trees utilization. This research was carried out in April-August 2012 at IjenRaung highland areas by field survey. The results showed that the soil contained high content of organic carbon, nitrogen total, and C/N ratio; low available phosphorus; moderate to high cation exchange capacity, and low base cation of calcium, magnesium, and potassium; as well as slightly low pH. Higher altitude tended to have higher C organic and N total content, C/N ratio as well as pH. In contrast, in lower altitude tended to have lower available P, base saturation, as well as Ca, Mg, and K content. The dominant shade trees for coffee farming at the Ijen-Raung highland areas were suren (Toona sureni) , dadap (Erythrina sp.), kayumanis (Cinnamomum zeylanicum), pinus (Pinus mercusii), and kayu putih (Eucalyptus globulus). Different shade tree species resulted in different of soil fertility. Shade trees tended to influence cation exchange capacity from moderate to high, pH slightly acid, high base saturation, and low P available. Suren tree influenced better base cation than that of other trees but dadap tree was better in increasing soil fertility. Key word: Soil fertility, arabica coffee, andisol, shade trees, smallholding


2019 ◽  
Vol 24 (1) ◽  
pp. 35-53
Author(s):  
Kathleen Cedeño

Soil quality is crucial to global food production security. However, research data on soil quality, which is vital to enhancing soil fertility and crop yield, is limited particularly on the soil in the rice fields located in Langkong, Mlang, Cotabato. This study aims to assess the soil quality of one of the organic rice farms in said area. Soil samples were collected in thirty-one (31) paddies for two sampling periods: thirty (30) days after harvest and thirty (30) days after rice transplanting. Eight (8) soil indicators representing soil physicochemical characteristics were measured from 0-15 cm depth; the indicators were soil texture, water holding capacity, pH, exchangeable phosphorus, extractable potassium, total organic matter, electrical conductivity, and cation exchange capacity. Results reveal that soils in the studied area are characterized by clay loam with moderate water-holding capacity of about 62.57% and 60.57% for both sampling periods, respectively. The soil is strongly acidic (5.3 and 5.5) and has a low amount of organic matter (2.16% and 1.57%) and exchangeable P (8.55 ppm and 2.48 ppm), although it has marginal extractable K (80.77 ppm and 91.10 ppm). Also, the soils are non-saline and have low cation exchange capacity. The findings signify that the soils have insufficient fertility to sustain the optimal growth of the rice plants which can potentially reduce the yield of rice production. Thus, amendment of the soil quality and enhancement of soil management practices should be taken into consideration to further improve soil fertility to ensure productivity and profitability of farmers.


1992 ◽  
Vol 28 (4) ◽  
pp. 417-424 ◽  
Author(s):  
Charles F. Yamoah ◽  
J. R. Burleigh ◽  
V. J. Eylands

SUMMARYSustainable crop production on Rwandan oxisols is limited by widespread soil acidity caused by high levels of exchangeable aluminium. This study was designed to test the effectiveness of an indigenous lime material in counteracting the acidity and enhancing crop yields. Lime application significantly raised pH, exchangeable calcium and effective cation exchange capacity, and reduced exchangeable aluminium and total acidity. Calcium was directly proportional to effective cation exchange capacity (r = 0.962**) and was inversely related to aluminium (r = −0.955**). Consequently, yields of wheat, beans and potatoes, which served as test crops, were significantly increased by liming. Lime at high rates (4–8 t ha−1) had a longer residual effect than at low rates (less than 2 t ha−1), suggesting frequent applications are needed when low lime rates are used. Simple regression analysis showed an increase in pH of 0.154 units and a decrease in exchangeable aluminium of 0.385 meq 100 g−1 for a tonne of lime applied.


Soil Research ◽  
2015 ◽  
Vol 53 (4) ◽  
pp. 377 ◽  
Author(s):  
D. Curtin ◽  
P. M. Fraser ◽  
M. H. Beare

Cultivation of grassland is known to lead to the depletion of soil organic matter (SOM), but the effect on the size and composition of the exchangeable cation suite has not been documented. We measured cation exchange capacity (CEC) and exchangeable cations (calcium, Ca; magnesium, Mg; potassium, K; sodium, Na), as well as soil carbon (C) and nitrogen (N) (0–7.5, 7.5–15, and 15–25 cm), 8 years after conversion of long-term ryegrass–white clover pasture (grazed by sheep) to annual crop production. The trial was near Lincoln, Canterbury, New Zealand. The trial included three tillage treatments: crops established using intensive cultivation (mouldboard ploughing), minimum tillage (shallow cultivation, ~10 cm), or no-tillage. The 8-year rotation was barley, wheat, pea, barley, pea, barley, barley, barley. A sheep-grazed pasture was maintained as an experimental control. The experiment also included a permanent fallow treatment (maintained plant-free using herbicides; not cultivated). After 8 years under arable cropping, soil C stocks (0–25 cm) were 10 t ha–1 less, on average, than under pasture. The vertical distribution of soil organic matter (SOM) was affected by tillage type, but the total amount of organic matter in the top 25 cm did not differ (P > 0.05) among the tillage treatments. Under permanent fallow (C loss of 13 t ha–1 relative to pasture), total exchangeable cation (Ca + Mg + K +Na) equivalents declined by 47 kmolc ha–1, a 20% decrease compared with pasture. Loss of exchange capacity resulted in the selective release of cations with lower affinity for SOM (K, Na, Mg). Smaller losses of exchangeable cations were recorded under the arable cropping rotation (average 31 kmolc ha–1), with no differences among tillage treatments. Effective CEC (at field pH) decreased under permanent fallow and cultivated treatments because of: (1) depletion of SOM (direct effect); and (2) soil acidification, which eliminated some of the remaining exchange sites (indirect effect). Acidification in the permanent fallow can be attributed to the N mineralisation process, whereas in the cropped systems, excess cation removal in harvested straw and grain accounted for about half of the measured acidification. There was evidence that the organic matter lost under arable cropping and fallow had lower CEC than SOM as a whole.


2021 ◽  
Vol 5 (2) ◽  
pp. 48-54
Author(s):  
Elvina Septianta Molle ◽  
Andree Setiawan Wijaya ◽  
Alfred Jansen Sutrisno

Tijayan Village is located in Manisrenggo District, Klaten Regency, which has an area of agricultural land in the form of rice fields which is 105.80 ha of 155.3 ha of the village area. The extent of agricultural land in Tijayan Village needs to be maintained to increase agricultural products ranging from rice, secondary crops, and horticulture commodities. The researcher found a lack of information about soil maintenance in Tijayan Village. Therefore, the researcher conducted this research to determine and study the soil fertility and soil management efforts based on the limiting factors of fertility in Tijayan Village. In addition, soil fertility assessment is based on a desk study, detailed survey, soil analysis, making fertility distribution maps, and descriptive analysis. Determination of soil fertility status based on Soil Research Guidelines published by Soil Research Center, Bogor Indonesia, with parameters of cation exchange capacity, base saturation, total phosphorus, total potassium, and C- organic. Map made by using the ArcGIS 10.4 application. The fertility of Tijayan Village is categorized as low soil fertility class. The limiting factors for soil fertility are soil cation exchange capacity 3.47 me/ 100 g until 12.33 me/100g, total potassium < 10 mg/100g, and C- organic 1.213% - 2.286% . Consequently, management needs to be done by adding organic matter to the soil, fertilizing organically or inorganically, and the principle of healthy plant cultivation for rice fields.


1966 ◽  
Vol 17 (3) ◽  
pp. 317 ◽  
Author(s):  
AJ Rixon

Organic matter and soil fertility changes under irrigated pastures were followed for 5 years at Deniliquin, N.S.W. The effects of three annual pastures and of three perennial pastures were studied. Four years after their establishment an organic matter layer (mat) had formed under all pastures, and after its formation there was no further accumulation of organic carbon in the 0–3 in. soil horizon. The mean annual increase in organic carbon was 625 lb/acre under annual pastures and 1146 lb/acre under perennial pastures. The carbon/nitrogen ratios of both soil and mats, and the relationships of both organic carbon and nitrogen to the cation exchange capacity of the mats, were similarly affected by the annual and perennial pastures. The heterogeneous nature of the mats obscured any differences in their carbon/nitrogen ratios, which ranged from 12.8 to 22.0. The cation exchange capacity of the 0–3 in. soil horizon remained unchanged. The cation exchange capacity of the organic matter of the mats was approximately 100 m-equiv./100 g. After mat formation the underlying soil had a pH of approximately 6.0 under clovers and 6.5 under ryegrasses. The pH values of the mats ranged from 5.9 to 6.6.


2019 ◽  
Vol 13 (3) ◽  
pp. 448-457
Author(s):  
Micaela Benigna Pereira ◽  
Mário Leno Martins Véras ◽  
Neriane Rodrigues de Lima ◽  
Leandro Gonçalves Dos Santos ◽  
Thiago Jardelino Dias

Chemical soil quality is one of the factors more quickly affected by anthropogenic degradation processes and is one of the more important components for the development of agriculture. Thus, this study aimed to evaluate the effects of different doses of cattle manure and rock powder on the chemical characteristics of soil cultivated with butter kale. The treatments were arranged in five randomized blocks in a 4´4 factorial for the different doses of bovine manure (60, 120, 180 and 240 g/plant) combined with doses of rock powder (6, 12, 18 and 24 g/plant). Each block was composed of three plots, 18 m long and 1 m wide. The bed was composed of six portions, and each experimental plot consisted of 14 plants spaced at 0.40´0.40 m. At the end of the experiment, the following were analyzed: pH, organic matter, P, K, Na, Mg, exchangeable acidity, cation exchange capacity (CEC), sum of base and base saturation. The doses of bovine manure and MB-4 provided an increase in pH, organic matter, concentration of phosphorus, potassium, sodium, calcium, magnesium, exchangeable acidity, cation exchange capacity, sum of the base and saturation of the soil base. The doses of 240 g of cattle manure and 24 g of rock dust generated an increase in the chemical properties of the soil.


Sign in / Sign up

Export Citation Format

Share Document