scholarly journals Carbon Fiber Reinforced Polymer and Epoxy Adhesive Tensile Test Failure Analysis Using Scanning Electron Microscopy

2017 ◽  
Vol 20 (4) ◽  
pp. 951-961 ◽  
Author(s):  
Dany Arnoldo Hernandez ◽  
Carlos Alberto Soufen ◽  
Marcelo Ornaghi Orlandi
2019 ◽  
Vol 53 (14) ◽  
pp. 2015-2030 ◽  
Author(s):  
Jesung Yoo ◽  
Hoon Huh ◽  
Jaeyoung Lim ◽  
Taehwa Lee

This paper is concerned with the improvement of a tensile test method and the material properties of carbon fiber reinforced polymer manufactured by resin transfer molding considering stacking sequences at various strain rates for auto-body. Auto-body structure experiences the strain rates up to several hundreds per second during car crash. In order to apply the carbon fiber reinforced polymer panel into auto-body structures, it is critical to acquire the material properties of carbon fiber reinforced polymer at various strain rates considering stacking sequences. The tensile test method is improved for acceptable test results. Test specimens are modified for high-speed tensile tests of carbon fiber reinforced polymer in order to achieve designated strain rates and eliminate the effect from unfavorable conditions of inhomogeneity of deformation. Various types of grip tab materials are employed for acceptable failure modes. Tensile tests have been carried out with non-crimp fabric made by 50K high strength carbon fiber (NCF) and woven fabric made by a 2/2 twill pattern of 3K high strength carbon fiber (TWILL) with different stacking sequences of 0° and 90° unidirectional cases as well as [0°/90°] and [45°/−45°] symmetric cases. Digital image correlation method and force equilibrium grid method are adopted for strain and stress measurement of a carbon fiber reinforced polymer specimen during a tensile test. The material properties acquired indicate that the carbon fiber has little rate dependency, while the epoxy matrix has remarkable rate hardening at strain rates from 0.001 s−1 to 100 s−1.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Author(s):  
E. A. Nikolaeva ◽  
A. N. Timofeev ◽  
K. V. Mikhaylovskiy

This article describes the results of the development of a high thermal conductivity carbon fiber reinforced polymer based on carbon fiber from pitch and an ENPB matrix modified with a carbon powder of high thermal conductivity. Data of the technological scheme of production and the results of determining the physicomechanical and thermophysical characteristics of carbon fiber reinforced polymer are presented. 


Sign in / Sign up

Export Citation Format

Share Document