scholarly journals Karyotypic analysis in species of the genus Dasyprocta (Rodentia: Dasyproctidae) found in Brazilian Amazon

2003 ◽  
Vol 75 (1) ◽  
pp. 55-69 ◽  
Author(s):  
ROSEMAR S. L. RAMOS ◽  
WILLIAM G. VALE ◽  
FÁTIMA L. ASSIS

A total of 30 animals of the genus Dasyprocta were cytogenetically studied. They belong to the following species: D. prymnolopha (N=20), D. leporina (N=6), D. fuliginosa (N=1) and Dasyprocta sp. (N=3) (Dasyproctidae, Hystricognathi). Cell suspensions were obtained by peripheral blood culture, besides bone marrow and spleen cells, from D. prymnolopha and D. leporina. The diploid number was 64/65 for all samples. The karyotypes showed similarity, and chromosomal polymorphism was not detected by Giemsa conventional staining and G banding. The constitutive heterochromatin distribution at the pericentromeric region of all the chromosomes was similar in all species. D. prymnolopha, D. leporina and Dasyprocta sp. presented variation in the heterochromatical block size at one of the homologues of the A18 pair. D. fuliginosa presented the heterochromatin uniformly distributed in all chromosomes. There was not variation in the NORs pattern in the species studied.

2021 ◽  
Vol 15 (2) ◽  
pp. 89-99
Author(s):  
Ricardo Firmino de Sousa ◽  
Paulo Cesar Venere ◽  
Karina de Cassia Faria

Dermanura Gervais, 1856 is represented by small frugivorous bats of the Stenodermatinae subfamily. The taxonomy of this group presents controversies and has been subject to changes, especially since the morphological characters evaluated have left gaps that are difficult to fill regarding good species characterization. Previous studies performed in Dermanura cinerea Gervais, 1856 found that the karyotype of this species has a diploid number of chromosomes equal to 30 and 56 autosomal arms. The objective of the present study was to describe, for the first time, the karyotypes of the species Dermanura anderseni (Osgood, 1916) and Dermanura gnoma (Handley, 1987) based on classical cytogenetic markers. For both species, the diploid number found was 2n = 30 and NFa = 56. Two pairs of chromosomes showed markings of the nucleolus organizing regions (AgNORs) in the species D. anderseni and only one pair in D. gnoma, differing from what has already been described for D. cinerea. The two species analyzed here also showed differences in the sex chromosome system, with D. gnoma showing a neo-XY type system while in D. anderseni the classic XY sexual system was observed. In both species, visualization of the constitutive heterochromatin occurred in the pericentromeric region of all chromosomes, as well as in the short arms of the subtelocentric chromosomes. The present work represents an important expansion of karyotypic information for the subfamily Stenodermatinae, bringing chromosomal features that are possible to use in the taxonomic implications of the group.


Author(s):  
Jesús Martínez-Vázquez ◽  
María De los Ángeles Vela-Montero ◽  
Rosa María González-Monroy

<p>The description was made of the karyotype of <em>Peromyscus gratus</em> (Cricetidae) in the municipality of Tecamachalco, Puebla. Performing the technique of bone marrow extraction, in the obtention of chromosome, G bands was used Trypsin and for C bands a Barium Hydroxide solution was employed. <em>P</em>. <em>gratus</em> presents a diploid number of 2n = 48 and a fundamental number of NF = 54, the autosomes correspond to one metacentric, one submetacentric, two subtelocentric and 19 pairs telocentric from large to small. The sex chromosome X was subtelocentric and the Y was submetacentric unlike other populations of the species. The chromosomal banding pattern G was obtained. As for chromosome C banding, it was found that the constitutive heterochromatin was in the centromeric regions of the chromosomes.</p>


2021 ◽  
Vol 15 (2) ◽  
pp. 89-99
Author(s):  
Ricardo Firmino de Sousa ◽  
Paulo Cesar Venere ◽  
Karina de Cassia Faria

Dermanura Gervais, 1856 is represented by small frugivorous bats of the Stenodermatinae subfamily. The taxonomy of this group presents controversies and has been subject to changes, especially since the morphological characters evaluated have left gaps that are difficult to fill regarding good species characterization. Previous studies performed in Dermanura cinerea Gervais, 1856 found that the karyotype of this species has a diploid number of chromosomes equal to 30 and 56 autosomal arms. The objective of the present study was to describe, for the first time, the karyotypes of the species Dermanura anderseni (Osgood, 1916) and Dermanura gnoma (Handley, 1987) based on classical cytogenetic markers. For both species, the diploid number found was 2n = 30 and NFa = 56. Two pairs of chromosomes showed markings of the nucleolus organizing regions (AgNORs) in the species D. anderseni and only one pair in D. gnoma, differing from what has already been described for D. cinerea. The two species analyzed here also showed differences in the sex chromosome system, with D. gnoma showing a neo-XY type system while in D. anderseni the classic XY sexual system was observed. In both species, visualization of the constitutive heterochromatin occurred in the pericentromeric region of all chromosomes, as well as in the short arms of the subtelocentric chromosomes. The present work represents an important expansion of karyotypic information for the subfamily Stenodermatinae, bringing chromosomal features that are possible to use in the taxonomic implications of the group.


2014 ◽  
Vol 5 (2) ◽  
pp. 140-147 ◽  
Author(s):  
Rafael Kretschmer ◽  
Vanusa Lilian Lima ◽  
Tiago Marafiga Degrandi ◽  
Lucia Vinadé ◽  
Adriano Luis Schünemann ◽  
...  

The order Passeriformes is the largest group of species karyotyped among birds, however little is known about the cytogenetic of the Mimidae family, registering only karyology basic data (giemsa staining). The aim of this study was to analyze the chromosomal complement from the species Mimus saturninus by conventional staining and differential chromosome banding. Diploid number and chromosome morphology were determined, as well as the distribution pattern of constitutive heterochromatin (CBG-banding), GTG-banding andAgNOR staining (NORs). The Chalk-browed Mockingbird has 2n=80. The first and fourth pairs are submetacentric and the second, third and fifth are acrocentric. The remaining chromosomes pairs of the complement have telocentric morphology. The Z chromosome is submetacentric and the W is metacentric. CBG-banding showed positive staining in the pericentromeric region of most macrochromosomes and microchromosomes and also at Z chromosome, differently from W chromosome which appeared totally heterochromatic. The GTG-banding was similar to Gallus gallus and in other species which have already been GTG-banded. The NORs were identified in a pair of microchromosomes characterized by presenting a remarkable secondary constriction. This can be considered as a plesiomorphic characteristic for M. saturninus once baseline groups (Paleognathae) also showed a pair of microchromosomes bearing NORs.


1998 ◽  
Vol 331 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Masafumi YOSHIMURA ◽  
Yoshito IHARA ◽  
Tetsuo NISHIURA ◽  
Yu OKAJIMA ◽  
Megumu OGAWA ◽  
...  

Several sugar structures have been reported to be necessary for haemopoiesis. We analysed the haematological phenotypes of transgenic mice expressing β-1,4 N-acetylglucosaminyltransferase III (GnT-III), which forms bisecting N-acetylglucosamine on asparagine-linked oligosaccharides. In the transgenic mice, the GnT-III activity was elevated in bone marrow, spleen and peripheral blood and in isolated mononuclear cells from these tissues, whereas no activity was found in these tissues of wild-type mice. Stromal cells after long-term cultures of transgenic-derived bone marrow and spleen cells also showed elevated GnT-III activity, compared with an undetectable activity in wild-type stromal cells. As judged by HPLC analysis, lectin blotting and lectin cytotoxicity assay, bisecting GlcNAc residues were increased on both blood cells and stromal cells from bone marrow and spleen in transgenic mice. The transgenic mice displayed spleen atrophy, hypocellular bone marrow and pancytopenia. Bone marrow cells and spleen cells from transgenic mice produced fewer haemopoietic colonies. After lethal irradiation followed by bone marrow transplantation, transgenic recipient mice showed pancytopenia compared with wild-type recipient mice. Bone marrow cells from transgenic donors gave haematological reconstitution at the same level as wild-type donor cells. In addition, non-adherent cell production was decreased in long-term bone marrow cell cultures of transgenic mice. Collectively these results indicate that the stroma-supported haemopoiesis is compromised in transgenic mice expressing GnT-III, providing the first demonstration that the N-glycans have some significant roles in stroma-dependent haemopoiesis.


1971 ◽  
Vol 133 (6) ◽  
pp. 1325-1333 ◽  
Author(s):  
Klaus-Ulrich Hartmann

Spleen cells of bone marrow chimeras (B cells) and of irradiated mice injected with thymus cells and heterologous erythrocytes (educated T cells) were mixed and cultured together (17). The number of PFC developing in these cultures was dependent both on the concentration of the B cells and of the educated T cells. In excess of T cells the number of developing PFC is linearly dependent on the number of B cells. At high concentrations of T cells more PFC developed; the increase in the number of PFC was greatest between the 3rd and 4th day of culture. Increased numbers of educated T cells also assisted the development of PFC directed against the erythrocytes. It is concluded that the T cells not only play a role during the triggering of the precursor cells but also during the time of proliferation of the B cells; close contact between B and T cells seems to be needed to allow the positive activity of the T cells.


2015 ◽  
Vol 146 (4) ◽  
pp. 296-305 ◽  
Author(s):  
Willam O. da Silva ◽  
Julio C. Pieczarka ◽  
Rogério V. Rossi ◽  
Horacio Schneider ◽  
Iracilda Sampaio ◽  
...  

Neacomys (Sigmodontinae) comprises 8 species mainly found in the Amazonian region. We describe 5 new karyotypes from Brazilian Amazonia: 2 cytotypes for N. paracou (2n = 56/FNa = 62-66), 1 for N. dubosti (2n = 64/FNa = 68), and 2 for Neacomys sp. (2n = 58/FNa = 64-70), with differences in the 18S rDNA. Telomeric probes did not show ITS. We provide a phylogeny using Cytb, and the analysis suggests that 2n = 56 with a high FNa is ancestral for the genus, as found in N. paracou, being retained by the ancestral forms of the other species, with an increase in 2n occurring independently in N. spinosus and N. dubosti. Alternatively, an increase in 2n may have occurred in the ancestral taxon of the other species, followed by independent 2n-reduction events in Neacomys sp. and in the ancestral species of N. tenuipes, N. guianae, N. musseri, and N. minutus. Finally, a drastic reduction event in the diploid number occurred in the ancestral species of N. musseri and N. minutus which exhibit the lowest 2n of the genus. The karyotypic variations found in both intra- and interspecific samples, associated with the molecular phylogeny, suggest a chromosomal evolution with amplification/deletion of constitutive heterochromatin and rearrangements including fusions, fissions, and pericentric inversions.


1984 ◽  
Vol 159 (1) ◽  
pp. 57-67 ◽  
Author(s):  
L LeFrancois ◽  
M J Bevan

We have investigated which T cell subclass defined by cytolysis with monoclonal anti-Lyt-1.2 and anti-Lyt-2.2 antibodies is required to adoptively transfer the ability to reject skin grafts. B6.Thy-1.1 spleen cells immune to graft antigens were fractionated with antibody plus C' and transferred to adult thymectomized, irradiated, bone marrow-reconstituted (ATXBM) B6.Thy-1.2 hosts that were simultaneously grafted with BALB.B skin. We found that when the ATXBM hosts were used 6 wk after irradiation and marrow reconstitution, both Lyt-1-depleted and Lyt-2-depleted immune spleen cells could transfer the ability to promptly reject skin grafts. However, such ATXBM recipients of Lyt-2-depleted cells that had rejected skin grafts were found to contain graft-specific CTL that were largely of host (B6.Thy-1.2) origin. When ATXBM hosts were used for the experiment 1 wk after irradiation and marrow reconstitution, no host-derived graft-specific CTL could be detected. However, graft rejection occurred in recipients of anti-Lyt-1- or anti-Lyt-2 plus C'-treated immune cells and specific CTL were generated from spleen cells of both groups. Thus, in the absence of a host-derived response, adoptively transferred immune Lyt-2+ cells, either resistant to, or that escaped from, antibody plus C' treatment, are able to expand in response to the antigenic stimulus provided by the graft. A more complete elimination of specific T cell subclasses is therefore needed to assess the relative contribution of a particular subset to the graft rejection process.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1633-1640
Author(s):  
LM Pelus ◽  
PS Gentile

Intravenous (IV) injection of 0.1 to 10 micrograms of authentic prostaglandin E2 (PGE2) in intact steady-state mice induces a population of bone marrow and spleen cells having the capacity to suppress CFU-GM proliferation when admixed with normal bone marrow cells. Equivalent suppression of CFU-GM committed to monocytic as well as granulocytic differentiation was observed using colony-stimulating factors (CSFs) differing in their lineage specificities and by direct morphological analysis of proliferating clones. Kinetic analysis indicates that suppressive bone marrow cells appear within 2 hours after PGE2 injection, are maximal at 6 hours, and are no longer observed by 24 hours postinjection. Positive and negative selection studies using monoclonal antibodies indicate that the PGE2-induced suppressor cells react positively with anti-GMA 1.2, MAC1, and F4/80 monoclonal antibodies, suggesting a myeloid/monocytic origin. As few as 1,000 positively selected bone marrow or spleen cells were able to inhibit maximally normal CFU-GM proliferation by 50,000 control bone marrow cells. Suppression of normal CFU-GM can be substituted for by 24- hour cell-free supernates from unseparated bone marrow cells or GMA 1.2 or F4/80 positively selected marrow or spleen cells from PGE2-treated but not control mice. These supernates also inhibited BFU-E proliferation. Injection of as few as 2 million bone marrow cells from PGE2-treated mice into steady-state mice or animals hematopoietically rebounding following a sublethal injection of cyclophosphamide significantly suppressed total CFU-GM proliferation in recipient mice within 6 hours. In summary, these studies describe the detection of a novel hematopoietic control network induced by PGE2 in intact mice.


Sign in / Sign up

Export Citation Format

Share Document