scholarly journals Ameliorative potential of Butea monosperma on chronic constriction injury of sciatic nerve induced neuropathic pain in rats

2012 ◽  
Vol 84 (4) ◽  
pp. 1091-1104 ◽  
Author(s):  
Venkata R.K. Thiagarajan ◽  
Palanichamy Shanmugam ◽  
Uma M. Krishnan ◽  
Arunachalam Muthuraman ◽  
Nirmal Singh

The present study was designed to investigate the ameliorative role of ethanolic extract from leaves of Butea monosperma in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rats. Hot plate, acetone drop, paw pressure, Von Frey hair and tail immersion tests were performed to assess the degree of thermal hyperalgesia, cold chemical allodynia, mechanical hyperalgesia & allodynia in the left hind paw and tail thermal hyperalgesia. Further on, thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and total calcium levels were estimated to assess the biochemical changes in the sciatic nerve tissue. Histopathological changes were also observed in the sciatic nerve tissue. Ethanolic extract of Butea monosperma leaves and pregabalin (serving as positive control) were administered for 14 consecutive days starting from the day of surgery. CCI resulted in significant changes in behavioural and biochemical parameters. Pretreatment of Butea monosperma attenuated CCI induced development of behavioural, biochemical and histopathological alterations in a dose dependent manner, which is comparable to that of pregabalin pretreated group. These findings may be attributed to its potential anti-oxidative, neuroprotective and calcium channel modulatory actions of Butea monosperma.

2014 ◽  
Vol 86 (3) ◽  
pp. 1435-1450 ◽  
Author(s):  
VENKATA R.K. THIAGARAJAN ◽  
PALANICHAMY SHANMUGAM ◽  
UMA M. KRISHNAN ◽  
ARUNACHALAM MUTHURAMAN

The aim of the present study is to investigate the ameliorative potential of ethanolic extract of whole plant of Vernonia cinerea in the chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rats. Behavioral parameters such as a hot plate, acetone drop, paw pressure, Von Frey hair and tail immersion tests were performed to assess the degree of thermal, chemical and mechanical hyperalgesia and allodynia. Biochemical changes in sciatic nerve tissue were ruled out by estimating thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and total calcium levels. Ethanolic extract of Vernonia cinerea and pregabalin were administered for 14 consecutive days starting from the day of surgery. CCI of sciatic nerve has been shown to induce significant changes in behavioral, biochemical and histopathological assessments when compared to the sham control group. Vernonia cinerea attenuated in a dose dependent manner the above pathological changes induced by CCI of the sciatic nerve, which is similar to attenuation of the pregabalin pretreated group. The ameliorating effect of ethanolic extract of Vernonia cinerea against CCI of sciatic nerve induced neuropathic pain may be due to the presence of flavonoids and this effect is attributed to anti-oxidative, neuroprotective and calcium channel modulator actions of these compounds.


2012 ◽  
Vol 25 (1) ◽  
pp. 219-230 ◽  
Author(s):  
L.W. Chu ◽  
J.Y. Chen ◽  
K.L. Yu ◽  
K.I. Cheng ◽  
I.J. Chen ◽  
...  

Atorvastatin is an HMG-CoA reductase inhibitor used to treat hypercholesterolemic conditions associated with hypertension. This study aims to investigate the anti-inflammatory and neuroprotective effects of atorvastatin on peripheral neuropathic pain. Peripheral neuropathic pain was induced by chronic constriction injury (CCI) in Sprague-Dawley rats. Rats were divided into 3 groups including sham-operated, CCI, and atorvastatin-treated. Atorvastatin (10 mg/kg) or phosphate-buffered saline was orally administered for 2 weeks. All animals were assessed by neurobehavioral tests before surgery and at days 3, 7, 14 after surgery. Inflammatory and neuroprotective factors were evaluated by Western blot analysis. eNOS, COX2 and iNOS in the sciatic nerve were also studied using immunohistochemistry. Atorvastatin attenuated CCI-induced nociceptive sensitization and thermal hyperalgesia in a time-dependent manner. Atorvastatin improved CCI-induced neurobehavioral/inflammatory activity by inhibition of TGF-β, PIκB/IκB, NFκB, COX2, iNOS, EP1 and EP4 in the sciatic nerve. Atorvastatin was also found to increase neuroprotection factors pAkt/Akt, eNOS and VEGF. Taken together, these data indicate that atorvastatin could protect the sciatic nerve against CCI-induced neuroinflammation and nociception.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Prasad Neerati ◽  
Harika Prathapagiri

Abstract Background Chronic neuropathic pain syndrome is associated with impaired quality of life and is poorly manageable. Alpha lipoic acid (ALA) is a powerful antioxidant and showed its effectiveness on diabetic neuropathy and other acute peripheral nerve injuries but it was not evaluated in the chronic neuropathic pain, chronic constriction injury (CCI) in rat model by using duloxetine (DLX) as standard. Methodology The main objective of the study was to expedite ALA effect on chronic peripheral neuropathy induced by CCI of sciatic nerve in rats. In this study, male Wister rats were randomly divided into six groups (n = 8) including, normal saline, sham operated, surgery control, DLX 30mg/kg treated, ALA treated 25mg/kg, and ALA+DLX. The CCI of sciatic nerve was conducted on all animals except normal saline group and studied for 21 days (i.e. 14 days treatment period & 7 days treatment free period) by using different behavioral, biochemical and, histopathology studies. Results ALA showed minor but significant decrease of thermal hyperalgesia, cold allodynia, malondialdehyde (MDA), total protein, lipid peroxidation, and nitric oxide levels and significant increase of motor coordination, glutathione level and decreased axonal degeneration significantly. These effects sustained even during treatment free period. ALA enhanced the effect of DLX when given in combination by showing sustained effect. In conclusion, ALA acted as potent antioxidant may be this activity is responsible for the potent neuroprotective effect. Conclusion Hence, ALA attenuated the nueroinflammation mediated by chronic peripheral neuropathy. Further studies are warranted with ALA to develop as a clinically relevant therapeutic agent for the treatment of neuropathic pain.


Author(s):  
Saurabh Kohli ◽  
Taruna Sharma ◽  
Juhi Kalra ◽  
Dilip C. Dhasmana

Background: Neuropathic pain is associated with prolonged disability and is usually not responsive to conventional analgesics like NSAIDs and opioids. Even the recommended first-line drugs are effective in less than 50% patients. Thus, drugs with different mechanisms of action are needed. Baclofen, a GABA-B agonist has shown benefit in different types of neuropathic pains and is compared against pregabalin.Methods: The sciatic nerve was ligated in 2 groups of 6 rats each as per the chronic constriction injury model of neuropathic pain on day 0. After 14 days the effect of single doses of pregabalin (30mg/kg) and baclofen (5mg/kg) intraperitoneally were assessed over a 2 hours period. Thermal and mechanical hyperalgesia were assessed as measures of neuropathic pain by the hotplate and pin-prick method respectively.Results: Significant thermal and mechanical hyperalgesia was produced 14 days after sciatic nerve ligation in both the groups (p <0.05). Both pregabalin (p <0.001) and baclofen (p <0.01) were effective in decreasing thermal hyperalgesia throughout the two hours study period, but pregabalin was more effective as compared to baclofen (p <0.05) at 30, 60 and 120minutes. Both the drugs produced a significant decrease in mechanical hyperalgesia (p <0.01) throughout the study period. Again, pregabalin was the more effective drug (p <0.05) at all time points.Conclusions: Significant thermal and mechanical hyperalgesia was seen 14 days after sciatic nerve ligation. Both pregabalin and baclofen were effective in reversing the hyperalgesia, but pregabalin was the more effective of the two drugs at all time points.


2021 ◽  
Author(s):  
Jia Sun ◽  
Jia-Yan Li ◽  
Long-Qing Zhang ◽  
Dan-Yang Li ◽  
Jia-Yi Wu ◽  
...  

Abstract BackgroundNeuropathic pain is a debilitating disease with few effective treatments. Emerging evidence indicates the involvement of mitochondrial dysfunction and oxidative stress in neuropathic pain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a potent regulator of antioxidant response system. In this study, we investigated whether RTA-408 (a novel synthetic triterpenoid under clinical investigation) could activate Nrf2 and promote mitochondrial biogenesis (MB) to reverse neuropathic pain and the underlying mechanisms.MethodsNeuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve. Pain behaviors were measured via the von-Frey test and Hargreaves plantar test. The L4-6 spinal cord was collected to examine the activation of Nrf2 and MB.ResultsRTA-408 treatment significantly reversed mechanical allodynia and thermal hyperalgesia in CCI mice in a dose-dependent manner. Furthermore, RTA-408 increased the activity of Nrf2 and significantly restored MB that was impaired in CCI mice in an Nrf2 dependent manner. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) is the key regulator of MB. We found that PGC-1α activator also exhibited a potent analgesic effect in CCI mice. Moreover, the antinociceptive effect of RTA-408 was reversed by the pre-injection of PGC-1α inhibitor.ConclusionsNrf2 activation attenuates chronic constriction injury-induced neuropathic pain via induction of PGC-1α-mediated mitochondrial biogenesis in the spinal cord. Our results indicate that Nrf2 may be a potential therapeutic strategy to ameliorate neuropathic pain and many other disorders with oxidative stress and mitochondrial dysfunction.


2021 ◽  
Author(s):  
Huilian Bu ◽  
Huilian Bu ◽  
Pengfei Jiao ◽  
Pengfei Jiao ◽  
Xiaochong Fan ◽  
...  

Abstract Botulinum toxin type A (BTX-A) was widely used to treat neuropathic pain in clinic. The underlying analgesic mechanism of BTX-A involves in axonal transport. The chemokine (C-X-C motif) ligand 13 (CXCL13) and GABA transporter 1 (GAT-1) played important roles in chronic pain. We established a chronic constriction injury (CCI) model. The pain behaviors of rats were measured by testing paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs). The level of proteins was measured by western blots. In our results, the CCI rats showed decrease of PWTs and PWLs, which were relieved by BTX-A. BTX-A reversed the over-expression of CXCL13 and GAT-1 in spinal cord, DRG, sciatic nerve and plantar in CCI rats and characterized in dose-dependent manner. The inhibition of BTX-A on proteins we examined didn’t show significant trend among time points. The analgesic effect of BTX-A disappeared after the axon transport of sciatic nerve blocked by the colchicine. But the PWTs of the colchicine treated CCI rats were higher than non- colchicine-treated CCI rats. Colchicine decreased the levels of CXCL13 and GAT-1 in CCI rats. What’s more, the proteins we examined peaked at the sciatic nerve in the non-colchicine group, but the phenomenon disappeared in the colchicine group. In conclusion, the BTX-A and colchicine relieve neuropathic pain and suppress the increase of CXCL13 and GAT-1. Colchicine prevents the analgesic effect of BTX-A by blocking axon transport. The axon transport may play roles in the peripheral mechanisms of neuropathic pain.


1999 ◽  
Vol 90 (5) ◽  
pp. 1382-1391 ◽  
Author(s):  
Tatsuo Yamamoto ◽  
Yoshihiko Sakashita

Background Cholecystokinin-B receptor activation has been reported to reduce morphine analgesia. Neuropathic pain is thought to be relatively refractory to opioids. One possible mechanisms for a reduced effect of morphine on neuropathic pain is the induction of cholecystokinin in the spinal cord by nerve injury. The authors evaluated the role of the spinal cholecystokinin-B receptor on morphine analgesia in two rat neuropathic pain models: chronic constriction injury and partial sciatic nerve injury. Methods A chronic constriction injury is created by placing four loosely tied ligatures around the right sciatic nerve. A partial sciatic nerve injury was created by tight ligation of one third to one half of the right sciatic nerve. All drugs were injected intrathecally 7 and 11 days after the nerve injury. The effect of the drugs was reflected in the degree of paw withdrawal latency to thermal nociceptive stimulation. The paw withdrawal latencies of injured and uninjured paws were measured 5, 15, 30, and 60 min after the drugs were injected. Results In the chronic constriction injury model, intrathecal morphine increased the paw withdrawal latencies of injured and uninjured paws. PD135158, a cholecystokinin-B receptor antagonist, potentiated the analgesic effect of morphine on injured and uninjured paws. In the partial sciatic nerve injury model, the effect of morphine on the injured paw was less potent than that on the uninjured paw, and PD135158 potentiated the morphine analgesia in the uninjured paw and had only a minor effect on the morphine analgesia in the injured paw. Conclusions The effectiveness of morphine for thermal hyperalgesia after nerve injury depends on the type of nerve injury. The role of the cholecystokinin-B receptor in morphine analgesia in thermal hyperalgesia after nerve injury also depends on the type of nerve injury.


2014 ◽  
Vol 121 (1) ◽  
pp. 160-169 ◽  
Author(s):  
Franziska Barthel ◽  
Andrea Urban ◽  
Lukas Schlösser ◽  
Volker Eulenburg ◽  
Robert Werdehausen ◽  
...  

Abstract Background: Dysfunction of spinal glycinergic neurotransmission is a major pathogenetic factor in neuropathic pain. The synaptic glycine concentration is controlled by the two glycine transporters (GlyT) 1 and 2. GlyT inhibitors act antinociceptive in various animal pain models when applied as bolus. Yet, in some studies, severe neuromotor side effects were reported. The aim of the current study was to elucidate whether continuous inhibition of GlyT ameliorates neuropathic pain without side effects and whether protein expression of GlyT1, GlyT2, or N-methyl-d-aspartate receptor subunit NR-1 in the spinal cord is affected. Methods: In the chronic constriction injury model of neuropathic pain, male Wistar rats received specific GlyT1 and GlyT2 inhibitors (ALX5407 and ALX1393; Sigma-Aldrich®, St. Louis, MO) or vehicle for 14 days via subcutaneous osmotic infusion pumps (n = 6). Mechanical allodynia and thermal hyperalgesia were assessed before, after chronic constriction injury, and every 2 days during substance application. At the end of behavioral assessment, the expression of GlyT1, GlyT2, and NR-1 in the spinal cord was determined by Western blot analysis. Results: Both ALX5407 and ALX1393 ameliorated thermal hyperalgesia and mechanical allodynia in a time- and dose-dependent manner. Respiratory or neuromotor side effects were not observed. NR-1 expression in the ipsilateral spinal cord was significantly reduced by ALX5407, but not by ALX1393. The expression of GlyT1 and GlyT2 remained unchanged. Conclusions: Continuous systemic inhibition of GlyT significantly ameliorates neuropathic pain in rats. Thus, GlyT represent promising targets in pain research. Modulation of N-methyl-d-aspartate receptor expression might represent a novel mechanism for the antinociceptive action of GyT1 inhibitors.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (09) ◽  
pp. 52-58
Author(s):  
Akash Bharti ◽  
Jaspreet Kaur ◽  
Amit Kumar ◽  
Simranjit Singh ◽  
Deepak Kumar ◽  
...  

The present research work has been designed to evaluate the effect of p-coumaric acid in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rats. In addition, biochemical tests such as thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and total protein were performed in sciatic nerve tissue sample. The neuropathic pain has been effi ciently and successfully induced in rat by the performance of CCI. The battery of behavioural test showed the development of neuropathic pain as an index of rising the paw and tail thermal and mechanical pain sensitivity. The treatment of p-coumaric acid at dose 50 and 100 mg kg-1 , p.o. for 15 consecutive days have been shown to produce signifi cant ameliorative effect on CCI of sciatic nerve induced neuropathic pain sensitivity. In addition, CCI of sciatic nerve also induces the oxidative stress in nervous system by rising TBARS, decrease GSH and proteins levels in sciatic nerve tissue and these effects are reversed via administration of p-coumaric acid and statistically equivalent to standard drug. Hence, it may be concluded that, p-coumaric acid can be useful in the management of neuropathic pain symptoms.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jia Sun ◽  
Jia-Yan Li ◽  
Long-Qing Zhang ◽  
Dan-Yang Li ◽  
Jia-Yi Wu ◽  
...  

Background. Neuropathic pain is a debilitating disease with few effective treatments. Emerging evidence indicates the involvement of mitochondrial dysfunction and oxidative stress in neuropathic pain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a potent regulator of the antioxidant response system. In this study, we investigated whether RTA-408 (RTA, a novel synthetic triterpenoid under clinical investigation) could activate Nrf2 and promote mitochondrial biogenesis (MB) to reverse neuropathic pain and the underlying mechanisms. Methods. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve. Pain behaviors were measured via the von Frey test and Hargreaves plantar test. The L4-6 spinal cord was collected to examine the activation of Nrf2 and MB. Results. RTA-408 treatment significantly reversed mechanical allodynia and thermal hyperalgesia in CCI mice in a dose-dependent manner. Furthermore, RTA-408 increased the activity of Nrf2 and significantly restored MB that was impaired in CCI mice in an Nrf2-dependent manner. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) is the key regulator of MB. We found that the PGC-1α activator also induced a potent analgesic effect in CCI mice. Moreover, the antinociceptive effect of RTA-408 was reversed by the preinjection of the PGC-1α inhibitor. Conclusions. Nrf2 activation attenuates chronic constriction injury-induced neuropathic pain via induction of PGC-1α-mediated mitochondrial biogenesis in the spinal cord. Our results indicate that Nrf2 may be a potential therapeutic strategy to ameliorate neuropathic pain and many other disorders with oxidative stress and mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document