scholarly journals Protection of estrogen in portal hypertension gastropathy: an experimental model

2011 ◽  
Vol 48 (3) ◽  
pp. 211-216 ◽  
Author(s):  
Maria Isabel Morgan-Martins ◽  
Simone Iahnig Jacques ◽  
Renata Minuzzo Hartmann ◽  
Camila Moraes Marques ◽  
Cláudio Augusto Marroni ◽  
...  

CONTEXT: Portal hypertension is a complication secondary to cirrhosis that is characterized by increased blood flow and/or vascular resistance in the portal system, causing the appearance of a hyperdynamic collateral circulation. Partial portal vein ligation is an experimental model used in rats to study the pathophysiological mechanisms involved in pre-hepatic portal hypertension. Estrogen E2 is an antioxidant molecule with various physiological actions. OBJECTIVES: To evaluate the antioxidant activity of endogenous estrogen in an experimental model of partial portal vein ligation by comparing intact with castrated rats. METHODS: Twenty Wistar rats, weighing on average 250 g were used and divided into four groups: sham-operated (SO); intact (I) with partial portal vein ligation (I + PPVL), castrated (C) and castrated with partial ligation of the vein (C + PPVL). Day 1: castration or sham-operation; day 7, PPVL surgery; on day 15 post-PPVL, portal pressure in the mesenteric vein of rats was measured on polygraph Letica. Lipid peroxidation in the stomach was assessed using the technique of thiobarbituric acid reactive substances and activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase. Statistical analysis was done with ANOVA - Student-Newman-Keuls (mean ± SE), and P<0.05 was considered as significant. RESULTS: Portal pressure was significantly increased in C + PPVL as compared to the other groups. There was no significant difference in the group of intact rats. TBARS showed significant damage in C and C + PPVL in relation to others. Antioxidant enzymes were significantly increased in the castrated rats with subsequent PPVL as compared to the other groups. CONCLUSION: We suggest that estrogen E2 plays a protective role in intact compared with castrated rats because it presents hydrophenolic radicals in its molecule, thus acting as an antioxidant in this experimental model.

1992 ◽  
Vol 83 (1) ◽  
pp. 41-45 ◽  
Author(s):  
M. Dagenais ◽  
G. Pomier-Layrargues ◽  
B. Rocheleau ◽  
L. Giroux ◽  
P.-M. Huet

1. The systemic and splanchnic haemodynamic effects of pentifylline (40 mg/kg body weight intravenously) were assessed in rats with portal hypertension associated either with CCl4-induced cirrhosis (n= 13) or portal vein ligation (n=13). 2. Heparinized catheters were placed into the portal vein, inferior vena cava, aorta and left ventricle with exits from the neck. Haemodynamic studies were performed 4 h after consciousness was regained. Cardiac output and regional blood flows were measured using radiolabelled microspheres and the reference sample method in seven rats in each group; portal-systemic shunting was measured using microsphere injection in the ileo-colic vein in six rats in each group. 3. Forty-five minutes after injection, pentifylline had no effect on mean arterial pressure, cardiac output, peripheral resistance, portal venous flow, hepatic artery flow or portal-systemic shunting in either group of rats with portal hypertension. The drug lowered portal pressure (−18%) in cirrhotic rats, but not in portal-vein-ligated rats. 4. These data demonstrate that pentifylline lowers portal pressure in cirrhotic rats without affecting portal venous flow and portal-systemic shunting; this effect is possibly mediated by changes in intrahepatic resistance related to the effects of pentifylline on blood viscosity and/or on intrahepatic vasomotor tone.


1989 ◽  
Vol 257 (1) ◽  
pp. G52-G57 ◽  
Author(s):  
J. G. Geraghty ◽  
W. J. Angerson ◽  
D. C. Carter

The relationship between portal venous pressure and the degree of portasystemic shunting was studied in portal vein-ligated and cirrhotic rats anesthetized with halothane. One day after partial portal vein ligation there was a strong positive correlation (r = 0.80, n = 7) between portal pressure and shunting of mesenteric venous blood as measured by injection of radioactive microspheres. The relationship subsequently underwent rapid change but stabilized by 14 days postligation, when higher levels of shunting were again associated with higher portal pressures up to a limit of approximately 70% shunting, above which pressures did not increase further. This relationship was well described by a quadratic function (r = 0.75, n = 17). In cirrhotic rats there was no relationship between portal pressure and shunting (r = -0.01, n = 10). The results suggest that in the prehepatic model there is little inherent variability in capacity to develop shunts, which open to a degree directly related to portal pressure, but that this relationship may be altered in cirrhotic portal hypertension.


1985 ◽  
Vol 248 (6) ◽  
pp. G618-G625 ◽  
Author(s):  
E. Sikuler ◽  
D. Kravetz ◽  
R. J. Groszmann

In rats with portal hypertension induced by partial ligation of the portal vein, we have recently demonstrated an increased portal venous inflow that becomes an important factor in the maintenance of portal hypertension. The sequence of events that leads into this circulatory disarray is unknown. We evaluated chronologically the chain of hemodynamic changes that occurred after portal hypertension was induced by partial ligation of the portal vein. In this model it is possible to follow, from the initiation of the portal-hypertensive state, the interaction between blood flow and resistance in the portal system as well as the relation between the development of portal-systemic shunting and the elevated portal venous inflow. The study was performed in 45 portal-hypertensive rats and in 29 sham-operated rats. Blood flow and portal-systemic shunting were measured by radioactive microsphere techniques. The constriction of the portal vein was immediately followed by a resistance-induced portal hypertension characterized by increased portal resistance (9.78 +/- 0.89 vs. 4.18 +/- 0.71 dyn X s X cm-5 X 10(4), mean +/- SE, P less than 0.01), increased portal pressure (17.7 +/- 0.9 vs. 9.5 +/- 0.6 mmHg, P less than 0.001), and decreased portal venous inflow (3.93 +/- 0.26 vs. 6.82 +/- 0.49 ml X min-1 X 100 g body wt-1, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 250 (2) ◽  
pp. G205-G212 ◽  
Author(s):  
E. Sikuler ◽  
R. J. Groszmann

To clarify the roles that portocollateral resistance ("backward-flow" theory) and portal flow ("forward-flow" theory) play in maintaining chronic portal hypertension, we studied, in a rat model with prehepatic portal hypertension, the hemodynamic changes that occur when portocollateral resistance is reduced and high portal venous inflow is maintained. In 30 portal-hypertensive rats the constriction around the portal vein was removed 4 days after induction of portal hypertension, 30 rats were used as portal vein-constricted controls, and 30 additional rats were subjected to a sham operation. The removal of the ligature constricting the portal vein was followed by an immediate decrease in portal pressure (from 16.3 +/- 0.8 to 9.6 +/- 0.8 mmHg, P less than 0.001). Two days after the ligature removal, hyperdynamic circulation was still evident and was characterized by a decreased splanchnic arteriolar resistance and an increased portal venous inflow. The coexistence of high portal venous inflow and normal portal pressure indicates that high portal venous inflow per se is not sufficient to produce an increase in portal pressure when it faces a low-resistance vascular bed. We conclude that portal hypertension is induced by the interaction of an abnormally high portal venous inflow and high resistance offered to the flow by the portocollateral vessels. Neither the forward-flow theory nor the backward-flow theory can be applied solely to explain the increased portal pressure.


Author(s):  
Daren Athiê Boy RODRIGUES ◽  
Aline Riquena da SILVA ◽  
Leonardo Carvalho SERIGIOLLE ◽  
Ramiro de Sousa FIDALGO ◽  
Sergio San Gregorio FAVERO ◽  
...  

BACKGROUND: Partial portal vein ligation causes an increase in portal pressure that remains stable even after the appearance of collateral circulation, with functional adaptation to prolonged decrease in portal blood flow. AIM: To assess whether different constriction rates produced by partial ligation of the vein interfere with the results of this experimental model in rats. METHODS: Three groups of five rats each were used; in group 1 (sham-operated), dissection and measurement of portal vein diameters were performed. Portal hypertension was induced by partial portal vein ligation, reducing its size to 0.9 mm in the remaining 10 animals, regardless of the initial diameter of the veins. Five animals with portal hypertension (group 2) underwent reoperation after 15 days and the rats in group 3 after 30 days. The calculation of the constriction rate was performed using a specific mathematical formula (1 - π r 2 / π R2) x 100% and the statistical analysis with the Student t test. RESULTS: The initial diameter of the animal's portal vein was 2.06 mm, with an average constriction rate of the 55.88%; although the diameter of the veins and the constriction rate in group 2 were lower than in group 3 (2.06 mm - 55,25% and 2.08 mm - 56.51%, respectively), portal hypertension was induced in all rats and no significant macroscopic differences were found between the animals that were reoperated after 15 days and after 30 days respectively, being the shorter period considered enough for the evaluation. Comparing the initial diameter of the vein and the rate of constriction performed in groups 2 and 3, no statistic significance was found (p>0.05). CONCLUSION: Pre-hepatic portal hypertension in rat can be induced by the reduction of the portal vein diameter to 0.9 mm, regardless the initial diameter of the vein and the vessel constriction rate.


2020 ◽  
Vol 29 ◽  
pp. 096368972096438
Author(s):  
Tomonori Tsuchida ◽  
Soichiro Murata ◽  
Shunsuke Hasegawa ◽  
Satoshi Mikami ◽  
Shin Enosawa ◽  
...  

Transplantation of liver organoids has been investigated as a treatment alternative to liver transplantation for chronic liver disease. Transportal approach can be considered as a method of delivering organoids to the liver. It is important to set the allowable organoid amount and verify translocation by intraportal transplantation. We first examined the transplantation tolerance and translocation of porcine fetal liver-derived allogeneic organoids using piglets. Fetal liver-derived organoids generated from the Kusabira Orange-transduced pig were transplanted to the 10-day-old piglet liver through the left branch of the portal vein. All recipients survived without any observable adverse events. In contrast, both local and main portal pressures increased transiently during transplantation. In necropsy samples, Kusabira Orange-positive donor cells were detected primarily in the target lobe of the liver and partly in other areas, including the lungs and brain. As we confirmed the transplantation allowance by porcine fetal liver-derived organoids, we performed intraportal transplantation of human-induced pluripotent stem cell (iPSC)-derived liver organoid, which we plan to use in clinical trials, and portal pressure and translocation were investigated. Human iPSC-derived liver organoids were transplanted into the same 10-day-old piglet. Portal hypertension and translocation of human iPSC-derived liver organoids to the lungs were observed in one of two transplanted animals. Translocation occurred in the piglet in which patent ductus venosus (PDV) was observed. Therefore, a 28-day-old piglet capable of surgically ligating PDV was used, and after the PDV was ligated, human iPSC-derived liver organoids with the amount of which is scheduled in clinical trials were transplanted. This procedure inhibited the translocation of human iPSC-derived liver organoids to extrahepatic sites without no portal hypertension. In conclusion, human iPSC-derived liver organoids can be safely transplanted through the portal vein. Ligation of the ductus venosus prior to transplantation was effective in inhibiting extrahepatic translocation in newborns and infants.


1998 ◽  
Vol 95 (5) ◽  
pp. 629-636 ◽  
Author(s):  
Chi-Jen CHU ◽  
Fa-Yauh LEE ◽  
Sun-Sang WANG ◽  
Full-Young CHANG ◽  
Han-Chieh LIN ◽  
...  

1.Hyposensitivity to vasopressin is a well-documented phenomenon in animals with portal hypertension and patients with cirrhosis subjected to haemorrhage. Excessive formation of nitric oxide is at least partly responsible for the vascular hyporesponsiveness to vasoconstrictors observed in experimental portal hypertension or in rats with haemorrhagic shock. This study investigated whether addition of aminoguanidine, a preferential inducible nitric oxide synthase inhibitor, to glypressin (a long-acting vasopressin analogue) could enhance its portal hypotensive effect in portal-hypertensive rats with bleeding. 2.Portal hypertension was induced by partial portal vein ligation. Fourteen days after operation, systemic and portal haemodynamics were measured in stable or bleeding portal vein-ligated rats receiving intravenous glypressin (0.07 ;mg/kg) or aminoguanidine (70 ;mg/kg) followed by glypressin infusion. In rats with a hypotensive haemorrhage, 4.5 ;ml of blood was withdrawn and 50% of the withdrawn blood was reinfused before the administration of glypressin or aminoguanidine. 3.Glypressin resulted in a significantly greater decrease in portal pressure in portal vein-ligated rats without bleeding than in those with bleeding (P< 0.001). In contrast, glypressin induced similar changes in mean arterial pressure between the two groups (P> 0.05). The addition of aminoguanidine significantly potentiated the portal-hypotensive effect of glypressin in bleeding portal vein-ligated rats (P< 0.005) without an effect on the changes in mean arterial pressure induced by glypressin infusion (P> 0.05). 4.Splanchnic hyposensitivity to glypressin exists in a haemorrhage-transfused rat model of portal hypertension. This hyposensitivity can be ameliorated by the administration of aminoguanidine.


HPB Surgery ◽  
1995 ◽  
Vol 8 (4) ◽  
pp. 223-229 ◽  
Author(s):  
J. Yates ◽  
D. M. Nott ◽  
P. J. Maltby ◽  
D. Billington ◽  
J. N. Baxter ◽  
...  

Portal systemic shunting (PSS) and portal pressure were measured in control rats and in animals with portal hypertension induced by partial portal vein ligation (PPVL). The portal pressure in rats with partial portal vein ligation (13.4 ± 0.5 mm.Hg.) was significantly higher (p < 0.005) than in the control group (9.6 ± 0.6 mm.Hg.). Portal systemic shunting measured by consecutive injections of radiolabelled methylene diphosphonate (MDP), a non-diffusable marker and albumin microspheres directly into the splenic pulp was significantly increased (P < 0.005) in the portal hypertensive animals (30.8 ± 2.5%) compared to sham operated rats (2.6 ± 1.5%). Similarly, in portal hypertensive rats portal systemic shunting measured by intrasplenic injections of radiolabelled cobalt microspheres (37.1 ± 3.9%) was significantly greater (p < 0.005) than in control animals. There was a good correlation and agreement (r = 00.97) between the two methods of measuring portal systemic shunting. However because the 99Tcm-albumin microspheres are biodegradable the method allows portal systemic shunting to be measured in man. Furthermore since the computer adjusts the baseline to zero after each determination of portal systemic shunting the methodology allows repeated measurements to be made.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Lanning Yin ◽  
Haipeng Liu ◽  
Youcheng Zhang ◽  
Wen Rong

Aim. To compare the effectiveness of surgical procedures (selective or nonselective shunt, devascularization, and combined shunt and devascularization) in preventing recurrent variceal bleeding and other complications in patients with portal hypertension. Methods. A systematic literature search of the Medline and Cochrane Library databases was carried out, and a meta-analysis was conducted according to the guidelines of the Quality of Reporting Meta-Analyses (QUOROM) statement. Results. There were a significantly higher reduction in rebleeding, yet a significantly more common encephalopathy () in patients who underwent the shunt procedure compared with patients who had only a devascularization procedure. Further, there were no significant differences in rebleeding, late mortality, and encephalopathy between selective versus non-selective shunt. Next, the decrease of portal vein pressure, portal vein diameter, and free portal pressure in patients who underwent combined treatment with shunt and devascularization was more pronounced compared with patients who were treated with devascularization alone (). Conclusions. This meta-analysis shows clinical advantages of combined shunt and devascularization over devascularization in the prevention of recurrent variceal bleeding and other complications in patients with portal hypertension.


2009 ◽  
Vol 297 (2) ◽  
pp. G306-G311 ◽  
Author(s):  
Xiaofeng Sun ◽  
Andrés Cárdenas ◽  
Yan Wu ◽  
Keichi Enjyoji ◽  
Simon C. Robson

Vasoactive factors that regulate splanchnic hemodynamics include nitric oxide, catecholamines, and possibly extracellular nucleosides/nucleotides (adenosine, ATP). CD39/ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1) is the major vascular ectonucleotidase that hydrolyzes extracellular nucleotides. CD39 activity may be modulated by vascular injury, inflammation, and altered oxygen tension. Altered Cd39 expression by the murine hepatosplanchnic vasculature may impact hemodynamics and portal hypertension (PHT) in vivo. We noted that basal portal pressures (PPs) were comparable in wild-type and Cd39-null mice ( n = 9). ATP infusions resulted in increments in PP in wild-type mice, but, in contrast, this significantly decreased in Cd39-null mice ( n = 9) post-ATP in a nitric oxide-dependent manner. We then studied Cd39/NTPDase1 deletion in the regulation of portal hemodynamics, vascular integrity, and intestinal permeability in a murine model of PHT. Partial portal vein ligation (PPVL) was performed in Cd39-null ( n = 44) and wild-type ( n = 23) mice. Sequential measurements obtained after PPVL were indicative of comparable levels of PHT (ranges 14–29 mmHg) in both groups. There was one death in the wild-type group and eight in the Cd39-null group from intestinal bleeding ( P = 0.024). Circulatory stasis in the absence of overt portal vein thrombosis, portal congestion, intestinal hemorrhage, and increased permeability were evident in all surviving Cd39-null mice. Deletion of Cd39 results in deleterious outcomes post-PPVL that are associated with significant microcirculatory derangements and major intestinal congestion with hemorrhage mimicking acute mesenteric occlusion. Absent Cd39/NTPDase1 and decreased generation of adenosine in the splanchnic circulation cause heightened vascular permeability and gastrointestinal hemorrhage in PPVL.


Sign in / Sign up

Export Citation Format

Share Document