scholarly journals Municipalities of higher vulnerability to Sylvatic Yellow Fever occurrence in the São Paulo State, Brazil

2011 ◽  
Vol 53 (6) ◽  
pp. 335-339 ◽  
Author(s):  
Eduardo Stramandinoli Moreno ◽  
Rita de Cássia Barradas Barata

Until 1999 the endemic cases of Sylvatic Yellow Fever were located in the states of northern, midwestern and pre-Amazon regions. Since then, the disease progressively expanded its territory of occurrence, cases being registered beyond the traditional boundaries of endemism. The São Paulo State is considered to be part of this context, since after decades without registration of autochthonous cases of the disease, it reported, in 2000 and 2008-2009, epizootic occurrence in non-human primates and 30 cases in humans. Facts like these, added to the increase in incidences of serious adverse effects resulting from the Yellow Fever vaccination, have highlighted the importance of defining priority municipalities for vaccination against the disease in the state. Two groups of municipalities, some affected and some non-affected by YF, were compared for environmental variables related to the eco-epidemiology of the disease according to literature. The Multiple Correspondence Analysis (MCA) was used to pinpoint the factor able to differentiate the two groups of municipalities and define the levels of risk. The southeast region of the São Paulo State was considered to be the area with a higher number of municipalities classified as high risk and should be considered a priority for the application of prevention measures against Yellow Fever.

2012 ◽  
Vol 28 (10) ◽  
pp. 1949-1964 ◽  
Author(s):  
Vanessa Aparecida Feijó de Souza ◽  
Luiz Ricardo Paes de Barros Cortez ◽  
Ricardo Augusto Dias ◽  
Marcos Amaku ◽  
José Soares Ferreira Neto ◽  
...  

A space-time analysis of American visceral leishmaniasis (AVL) in humans in the city of Bauru, São Paulo State, Brazil was carried out based on 239 cases diagnosed between June 2003 and October 2008. Spatial analysis of the disease showed that cases occurred especially in the city's urban areas. AVL annual incidence rates were calculated, demonstrating that the highest rate occurred in 2006 (19.55/100,000 inhabitants). This finding was confirmed by the time series analysis, which also showed a positive tendency over the period analyzed. The present study allows us to conclude that the disease was clustered in the Southwest side of the city in 2006, suggesting that this area may require special attention with regard to control and prevention measures.


2013 ◽  
Vol 13 (4) ◽  
pp. 152-163 ◽  
Author(s):  
Inessa Lacativa Bagatini ◽  
Ana Lúcia Gerardi Spínola ◽  
Bianca de Miranda Peres ◽  
Adrislaine da Silva Mansano ◽  
Mafalda Alexandra Antunes Rodrigues ◽  
...  

Protozooplankton is an important component of the aquatic microbial food webs and its composition, density, and distribution reflect the chemical, physical, and biological aspects of the environment. Considering the scarce literature on freshwater protozoans in Brazil and on protozoan ecology in subtropical environments, we listed the ciliates and amoebae taxa found in 13 water bodies in São Paulo State and analyzed their abundance in relation to the environmental variables. We collected two samples in each environment, fixed immediately with mercuric chloride and stained with bromophenol blue. After microscopical analysis, 74 protozoan genera were identified and the Ciliophora were dominant in the majority of the environments. The Stichotrichia, represented mostly by the genus Halteria, occurred in all environments, and was the dominant subclass in five of them. The canonic correspondence analysis of the most frequent genera and the environmental variables showed that nitrite and nitrate were the variables that better explained the distribution of Limnostrombidium, Urotricha, and Vorticella. The densities of the genera Halteria, Coleps, and of the species Cinetochilum margaritaceum were positively affected by increasing concentrations of dissolved oxygen, particulate phosphate, conductivity, and temperature. C. margaritaceum were also negatively affected by increasing concentrations of nitrite and nitrate. Considering that we made only one sampling in each environment, the richness was high compared to the mean diversity of lakes in the São Paulo State. The Diogo Lake, located in an ecological reserve, was the richest one, confirming the need of more research on the biodiversity of more preserved environments.


2019 ◽  
Author(s):  
S. C. Hill ◽  
R. P. de Souza ◽  
J. Thézé ◽  
I. Claro ◽  
R. S. Aguiar ◽  
...  

AbstractSão Paulo (SP), a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in SP, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in SP, we generated and analysed virus genomic data and epizootic case data from NHP in SP. We report the occurrence of three spatiotemporally distinct phases of the outbreak in SP prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in SP, mostly sampled from non-human primates between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo state at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of SP state. Our results shed light on the sylvatic transmission of yellow fever in highly fragmented forested regions in SP state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.Author’s SummarySince July 2016, the southeast region of Brazil has experienced the largest yellow fever virus (YFV) outbreak in decades. São Paulo is the most densely populated state in southeast Brazil. The outbreak has caused serious public health concern in the state, as YFV does not normally circulate widely there and most of the 21 million inhabitants were correspondingly unvaccinated against YFV when the outbreak began. In Brazil, YFV typically circulates among non-human primates, and human cases represent isolated spillover events from this predominantly sylvatic cycle. Understanding the epidemiological dynamics and spread of YFV in non-human primates is therefore critical for contextualising human cases, and guiding vaccination strategies that can better protect local human populations. Here, we aim to contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in SP. We analyse the geographic and temporal distribution of observed cases of YFV in non-human primates in São Paulo state, and identify three distinct phases of the epizootic. We generate sequence data from 51 YFV-positive cases and perform phylogenetic and phylogeographic analyses aimed at understanding the spatial spread of YFV in São Paulo state. Analyses of these data indicate that YFV spread from the north of São Paulo state into more densely populated southern regions. Although we observe substantial heterogeneity in the rate at which different sampled YFV lineages spread, the typical rate of spread was low with a mean rate of ~1 km per day. This is consistent with a scenario in which the majority of transmission events occurred between non-human primates and sylvatic vectors across forested patches.Article Summary LineGenomic surveillance of yellow fever in São Paulo during the 2016-2018 epizootic


2011 ◽  
Vol 53 (3) ◽  
pp. 133-139 ◽  
Author(s):  
Renato Pereira de Souza ◽  
Selma Petrella ◽  
Terezinha Lisieux Moraes Coimbra ◽  
Adriana Yurika Maeda ◽  
Iray Maria Rocco ◽  
...  

After detecting the death of Howlers monkeys (genus Alouatta) and isolation of yellow fever virus (YFV) in Buri county, São Paulo, Brazil, an entomological research study in the field was started. A YFV strain was isolated from newborn Swiss mice and cultured cells of Aedes albopictus - C6/36, from a pool of six Haemagogus (Conopostegus) leucocelaenus (Hg. leucocelaenus) mosquitoes (Dyar & Shannon) collected at the study site. Virus RNA fragment was amplified by RT-PCR and sequenced. The MCC Tree generated showed that the isolated strain is related to the South American I genotype, in a monophyletic clade containing isolates from recent 2008-2010 epidemics and epizootics in Brazil. Statistical analysis commonly used were calculated to characterize the sample in relation to diversity and dominance and indicated a pattern of dominance of one or a few species. Hg. leucocelaenus was found infected in Rio Grande do Sul State as well. In São Paulo State, this is the first detection of YFV in Hg. leucocelaenus.


Author(s):  
Márcio Junio Lima Siconelli ◽  
Danillo Lucas Alves Espósito ◽  
Nathália Cristina Moraes ◽  
Julia Maria Ribeiro ◽  
Lívia Perles ◽  
...  

Yellow fever (YF) is a zoonotic arthropod-borne disease that is caused by the yellow fever virus (YFV) and characterized by a sylvatic and urban cycle. Its most severe presentation is manifested as a hemorrhagic disease, and it has been responsible for thousands of deaths in the last decades. This study describes the public health approaches taken to control the 2016-2017 YF outbreak in nonhuman primates (NHPs) that took place in the northeastern region of São Paulo state, Brazil. NHPs recovered from the field were necropsied, and YF diagnoses were made at the Laboratory of Molecular Virology, Ribeirão Preto Medical School and the Center of Pathology, Adolfo Lutz Institute of São Paulo. NHP samples were inoculated into Vero cells for YFV isolation. RNA extraction was performed directly from NHP tissues and tested by RT-qPCR. YFV-positive samples were confirmed by sequencing. Based on the rapid RT-qPCR results, surveillance actions were implemented in the entire region. Confirmatory histopathology and immunohistochemistry for YFV were also performed. Among nine NHPs, gross hepatic involvement was observed in six animals, five of which were YFV-RT-qPCR-positive. One YFV was isolated from the serum of an infant NHP. YFV RNA sequences diverged from the virus responsible for the last epizootic that occurred in São Paulo state, but it was similar to the current Brazilian epizootic. Public health actions included dissemination of information on YF transmission, investigation of the probable location of NHP infection, characterization of the environment, and subsequent creation of the blueprint from which prevention and control measures were implemented. The YFV sylvatic cycle occurred in the periurban areas of the northeastern region of São Paulo state, but no human cases were reported during this period, showing that integrated actions between human, animal, and environmental health professionals were critical to restrain the virus to the sylvatic cycle.


Author(s):  
Eduardo Stramandinoli Moreno ◽  
Roberta Spinola ◽  
Cilea Hatsumi Tengan ◽  
Roosecelis Araujo Brasil ◽  
Melissa Mascheratti Siciliano ◽  
...  

Since 2000, the expansion of Sylvatic Yellow Fever (YF) has been observed in the southeast of Brazil, being detected in areas considered silent for decades. Epizootics in non-human primates (NHPs) are considered sentinel events for the detection of human cases. It is important to report epizootic events that could have impact on the conservation status of susceptible species. We describe the epizootics in NHPs, notified in state of São Paulo, Brazil, between September 2008 to August 2009. Ninety-one epizootic events, involving 147 animals, were reported in 36 counties. Samples were obtained from 65 animals (44.2%). Most of the epizootics (46.6%) were reported between March and April, the same period during which human cases of YF occurred in the state. Biological samples were collected from animals found dead and were sent to Instituto Adolfo Lutz, in São Paulo. Two samples, collected in two counties without an indication for YF vaccination, were positive for the virus. Another 48 animals were associated with YF by clinical-epidemiological linkage with laboratory confirmed cases. Because the disease in human and NHPs occurred in the same period, the detection of the virus in NHPs did not work as sentinel, but aided in the delineation of new areas of risk.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Márcio Junio Lima Siconelli ◽  
Daniel Macedo de Melo Jorge ◽  
Luiza Antunes de Castro-Jorge ◽  
Benedito Antonio Lopes da Fonseca

ABSTRACT We report a coding-complete sequence of a yellow fever virus, strain JabSPM02, containing the 3′ untranslated region and all coding regions. The virus was recovered from an infected howler monkey from a rural area in São Paulo State, Brazil. Our findings show that it belongs to the South America 1E genotype.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariana Sequetin Cunha ◽  
Antonio Charlys da Costa ◽  
Natália Coelho Couto de Azevedo Fernandes ◽  
Juliana Mariotti Guerra ◽  
Fabiana Cristina Pereira dos Santos ◽  
...  

2010 ◽  
Vol 14 ◽  
pp. e51-e52
Author(s):  
M. Mascheretti ◽  
A. Ribeiro ◽  
C. Tengan ◽  
H.K. Sato ◽  
P. Opromolla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document