scholarly journals In vitro evaluation of verapamil and other modulating agents in Brazilian chloroquine-resistant Plasmodium falciparum isolates

Author(s):  
Carla M.S. Menezes ◽  
Karin Kirchgatter ◽  
Sílvia M. Di Santi ◽  
Carine Savalli ◽  
Fabíola G. Monteiro ◽  
...  

Verapamil, was assayed to record its modulating effect upon Brazilian Plasmodium falciparum isolates resistant to chloroquine. Other cardiovascular drugs known to be modulating agents in resistant malaria and/or multidrug-resistant neoplasias, including nifedipine, nitrendipine, diltiazem and propranolol, were also evaluated. Concentrations similar to those for cardiovascular therapy were used in the in vitro microtechnique for antimalarial drug susceptibility. Intrinsic antiplasmodial activity was observed from the lowest concentrations without a significant modulating action. Other reported modulating agents, such as the antipsychotic drug trifluoperazine and the antidepressants desipramine and imipramine, demonstrated similar responses under the same experimental conditions. Results suggest a much higher susceptibility of Brazilian strains, as well as an indifferent behaviour in relation to modulating agents.

Author(s):  
Laís Pessanha de Carvalho ◽  
Sara Groeger-Otero ◽  
Andrea Kreidenweiss ◽  
Peter G. Kremsner ◽  
Benjamin Mordmüller ◽  
...  

Boromycin is a boron-containing macrolide antibiotic produced by Streptomyces antibioticus with potent activity against certain viruses, Gram-positive bacteria and protozoan parasites. Most antimalarial antibiotics affect plasmodial organelles of prokaryotic origin and have a relatively slow onset of action. They are used for malaria prophylaxis and for the treatment of malaria when combined to a fast-acting drug. Despite the success of artemisinin combination therapies, the current gold standard treatment, new alternatives are constantly needed due to the ability of malaria parasites to become resistant to almost all drugs that are in heavy clinical use. In vitro antiplasmodial activity screens of tetracyclines (omadacycline, sarecycline, methacycline, demeclocycline, lymecycline, meclocycline), macrolides (oleandomycin, boromycin, josamycin, troleandomycin), and control drugs (chloroquine, clindamycin, doxycycline, minocycline, eravacycline) revealed boromycin as highly potent against Plasmodium falciparum and the zoonotic Plasmodium knowlesi. In contrast to tetracyclines, boromycin rapidly killed asexual stages of both Plasmodium species already at low concentrations (~ 1 nM) including multidrug resistant P. falciparum strains (Dd2, K1, 7G8). In addition, boromycin was active against P. falciparum stage V gametocytes at a low nanomolar range (IC50: 8.5 ± 3.6 nM). Assessment of the mode of action excluded the apicoplast as the main target. Although there was an ionophoric activity on potassium channels, the effect was too low to explain the drug´s antiplasmodial activity. Boromycin is a promising antimalarial candidate with activity against multiple life cycle stages of the parasite.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e69505 ◽  
Author(s):  
Julie A. Simpson ◽  
Kris M. Jamsen ◽  
Tim J. C. Anderson ◽  
Sophie Zaloumis ◽  
Shalini Nair ◽  
...  

2004 ◽  
Vol 48 (3) ◽  
pp. 954-960 ◽  
Author(s):  
Paktiya Teja-Isavadharm ◽  
James O. Peggins ◽  
Thomas G. Brewer ◽  
Nicholas J. White ◽  
H. Kyle Webster ◽  
...  

ABSTRACT Artemisinin and its derivatives, artesunate and artemether, are rapidly acting antimalarials that are used for the treatment of severe and uncomplicated multidrug-resistant falciparum malaria. To optimize treatment regimens that use this new class of antimalarials, there is a need for readily available and reproducible assays to monitor drug levels closely in patients. A sensitive and reproducible bioassay for the measurement of the concentrations of artemisinin derivatives in plasma and serum is described. By modifying the in vitro drug susceptibility test, it was found that antimalarial activity in plasma or serum containing an unknown concentration of drug could be equated to the known concentrations of dihydroartemisinin (DHA) required to inhibit parasite growth. Dose-response curves for a Plasmodium falciparum clone (clone W2) and DHA were used as a standard for each assay. Assays with plasma or serum spiked with DHA proved to be reproducible (coefficient of variation, ≤10.9%), with a lower limit of quantitation equivalent to 2.5 ng of DHA per ml. For plasma spiked with artesunate or artemether, there was good agreement of the results obtained by the bioassay and the concentrations measured by high-performance liquid chromatography (HPLC) with electrochemical detection. The bioassay for measurement of the antimalarial activities of artemisinin derivatives in body fluids requires a smaller volume of plasma or serum and is more sensitive than the presently available HPLC methods, can provide pharmacodynamic parameters for determination of activity against the parasite, and should enhance the design of more appropriate dosage regimens for artemisinin drugs.


2020 ◽  
Vol 8 (3) ◽  
pp. 130-138
Author(s):  
Brice Kouakou Bla ◽  
Oléfongo Dagnogo ◽  
Rolland Gueyraud Kipré ◽  
Opportune Gogo Ballé ◽  
Jonhson David Trébissou ◽  
...  

Information collected from nine (09) traditional healers in the Moronou village in the Department of Toumodi revealed that Anthocleista djanlonensis is regularly used by the population for primary health care in the processing of malaria. Evaluation of the In vitro antiplasmodial activity showed that the aqueous extracts inhibit growth of clinical isolates and chloroquinoresistant strains (K1) with IC50 of 8.29 µg/mL and 10.23 µg/mL while the ethanolic extracts had IC50 of 37.65 µg/mL and 46.07 µg/mL on the same strains respectively. Results of the In vitro antimalarial bioassay showed that aqueous extracts have promising antiplasmodial effects on clinical isolates and on Plasmodium falciparum multidrug resistant K1 strain (3 µg/mL <IC50 <15 µg/mL). Phytochemical screening revealed that the extracts contain mainly alkaloids, polyphenols, polyterpenes and flavonoids


2007 ◽  
Vol 76 (2) ◽  
pp. 245-250 ◽  
Author(s):  
MAYFONG MAYXAY ◽  
DAN SUDIMACK ◽  
SAMLANE PHOMPIDA ◽  
TIENGKHAM PONGVONGSA ◽  
TIM ANDERSON ◽  
...  

1999 ◽  
Vol 41 (4) ◽  
pp. 249-253 ◽  
Author(s):  
Carla M. S. MENEZES ◽  
Karin KIRCHGATTER ◽  
Sílvia M. F. DI SANTI ◽  
Carine SAVALLI ◽  
Fabíola G. MONTEIRO ◽  
...  

Erythromycin, a reversal agent in multidrug-resistant cancer, was assayed in chloroquine resistance modulation. The in vitro microtechnique for drug susceptibility was employed using two freshly isolates of Plasmodium falciparum from North of Brazil. The antimalarial effect of the drug was confirmed, with an IC50 estimates near the usual antimicrobial therapy concentration, and a significant statistical modulating action was observed for one isolate.


2009 ◽  
Vol 23 (11) ◽  
pp. 1634-1637 ◽  
Author(s):  
Ill-Min Chung ◽  
Min-Young Kim ◽  
Sun-Dong Park ◽  
Won-Hwan Park ◽  
Hyung-In Moon

2015 ◽  
Vol 59 (10) ◽  
pp. 6117-6124 ◽  
Author(s):  
Grennady Wirjanata ◽  
Boni F. Sebayang ◽  
Ferryanto Chalfein ◽  
Prayoga ◽  
Irene Handayuni ◽  
...  

ABSTRACTThe 4-aminoquinoline naphthoquine (NQ) and the thiazine dye methylene blue (MB) have potentin vitroefficacies againstPlasmodium falciparum, but susceptibility data forP. vivaxare limited. The species- and stage-specificex vivoactivities of NQ and MB were assessed using a modified schizont maturation assay on clinical field isolates from Papua, Indonesia, where multidrug-resistantP. falciparumandP. vivaxare prevalent. Both compounds were highly active againstP. falciparum(median [range] 50% inhibitory concentration [IC50]: NQ, 8.0 nM [2.6 to 71.8 nM]; and MB, 1.6 nM [0.2 to 7.0 nM]) andP. vivax(NQ, 7.8 nM [1.5 to 34.2 nM]; and MB, 1.2 nM [0.4 to 4.3 nM]). Stage-specific drug susceptibility assays revealed significantly greater IC50s in parasites exposed at the trophozoite stage than at the ring stage for NQ inP. falciparum(26.5 versus 5.1 nM,P= 0.021) andP. vivax(341.6 versus 6.5 nM,P= 0.021) and for MB inP. vivax(10.1 versus 1.6 nM,P= 0.010). The excellentex vivoactivities of NQ and MB against bothP. falciparumandP. vivaxhighlight their potential utility for the treatment of multidrug-resistant malaria in areas where both species are endemic.


Sign in / Sign up

Export Citation Format

Share Document