scholarly journals Action of growth regulators on flowering and pod production of soybean cultivar Davis

1981 ◽  
Vol 38 (1) ◽  
pp. 99-112
Author(s):  
Paulo R.C. Castro ◽  
Roberto S. Moraes

This research deals with the effects of growth regulators on flowering and pod formation in soybean plant (Glycine max cv. Davis). Under greenhouse conditions, soybean plants were sprayed with 2,3,5-triiodobenzoic acid (TIBA) 20 ppm, Agrostemmin (1g/10 ml/3 l) gibberellic acid (GA) 100 ppm, and (2-chloroethyl) trimethylammonium chloride (CCC) 2,000 ppm. Application of TIBA increased number of flowers. 'Davis' soybean treated with CCC and TIBA presented a tendency to produce a lower number of pods.

1981 ◽  
Vol 38 (1) ◽  
pp. 127-138 ◽  
Author(s):  
Paulo R.C. Castro ◽  
Roberto S. Moraes

This research deals with the effects of exogenous growth regulators on production of soybean plant (Glycine max cv.. Davis) under greenhouse conditions, At the flower anthesis, 2,3,5-triiodobenzoic acid (TIBA) 20 ppm was applied. Other two applications with TiBA, with intervals of four days, were realized. Before flowering, Agrostemin (1 g/10 ml/3 1), gibberellic acid (GA) 100 ppm, and (2-chloroethyl) trimethylammonium chloride (CCC) 2,000 ppm were applied. It was observed that CCC and TIBA reduced stem dry weight. Soybean plants treated with TIBA reduced weight of pods without seeds , seed number and seed weight.


1981 ◽  
Vol 38 (1) ◽  
pp. 269-280
Author(s):  
Paulo R.C. Castro ◽  
Natal A. Vello

The effects of growth regularots on soybean plant (Glycine max) under greenhouse conditions were studied. Before flower ing, Agrostemmin (1 g/10 ml/3 1), gibberellic acid (GA) 100 ppm, and (2-chloroethyl) trimethylammonium chloride (CCC) 2,000 ppm were applied. At the flower anthesis, 2,3,5 - triio dobenzoic acid (TIBA) 20 ppm was applied. Other two applications with TIBA, with intervals of four days, were realized. Treatment with GA increased plant height while CCC presented a tendency to reduce it. Numbers of leaves, internods, and stems were not affected by the growth regulators.


1981 ◽  
Vol 38 (1) ◽  
pp. 289-298 ◽  
Author(s):  
Paulo R.C. Castro

The effects of growth substances on productivity of 'Davis' soybean maintained under competition was investigated. Before the flowering, Agrostemmin (1 g/10 ml/3 1), gibberellic acid (GA) 100 ppm, and (2-chloroethyl) trimethylammonium chloride (CCC) 2,000 ppm were applied. At the flower anthesis, 2,3,5-triiodobenzoic acid (TIBA) 20 ppm was applied. Other two applications with TIBA, with intervals of four days, were realized. The growth regulators did not affect the productivity of 'Davis' soybean maintened under competition. The competition among plants did not affect the stem dry weight and number of pods, and seeds. The competition reduced weight of pods without seeds, seed weight, and weight of 100 seeds.


Author(s):  
Paulo R.C. Castro ◽  
Hiroshi Kimati

This research, deals with the effects of exogenous growth regulators on infection by microorganisms on soybean (Glycine max cv. Davis) seeds. To study the influence of the chemicals, soybean plants were sprayed with gibberellic acid (GA) 100 ppm, (2-chloroethyl) trimethylammonium chloride (CCC) 2,000 ppm, succinic acid-2,2-dimethy1hydrazide (SADH) 4,000 ppm, indolylacetic acid (IAA) 100 ppm, 2,3,5-triiodobenzoic acid (TIBA) 20 ppm (three applications), and Agrostemin (1g/10 ml/ 3 1). Application of growth regulators did not affect infect ion by microorganisms on soybean seeds. The prominent fungus isolated was Phomopsis sojae. Alternaria and Fusarium spp. were isolated from seeds. The presence of a bacterium on the seeds was observed. The delay in harvest and high humidity increased the number of seeds from which Phomopsis was recovered.


Author(s):  
K. Espadas-Pinacho ◽  
G. López-Guillén ◽  
J. Gómez-Ruiz ◽  
L. Cruz-López

Abstract The present study analyzed the volatile compounds emitted by Glycine max (cv. FT-Cristalina-RCH) soybean plants: healthy plants and plants damaged mechanically or by the Mexican soybean weevil Rhyssomatus nigerrimus. The SPME method was used to compare the volatile profile of soybean plants in four different conditions. The volatile profile of G. max plants infested by R. nigerrimus was qualitatively and quantitatively different from that of healthy and mechanically damaged plants. Emission of 59 compounds was detected in the four treatments. Of these compounds, 19 were identified by comparison of the Kovats index, mass spectrum and retention times with those of synthetic standards. An increase in concentration of the volatiles (Z)-3-hexenyl acetate and the compound 1-octen-3-ol was observed when the soybean plants were mechanically damaged. The compounds mostly produced by the soybean plant during infestation by male and female R. nigerrimus were 1-octen-3-ol, 6-methyl-5-hepten-2-one, (E)-β-ocimene, salicylaldehyde, unknown 10, linalool, methyl salicylate, (Z)-8-dodecenyl acetate (ester 5), ketone 2 and geranyl acetone. Behavioral effects of the identified compounds during the insect-plant interaction and their conspecifics are discussed.


1974 ◽  
Vol 82 (2) ◽  
pp. 245-249 ◽  
Author(s):  
M. Abdel-Rahman ◽  
F. M. R. Isenberg

SummaryPreharvest sprays with 6-hydroxy-3-(2H)-pyridazinone (MH), or immersion in solutions of MH, 2,4-dichlorophenoxyacetic acid (2,4-D), 2-chloroethylphosphonic acid (ethephon), coumarin or (2-chloroethyl) trimethylammonium chloride (CCC) inhibited both sprouting and rooting of treated carrots during storage at 0 °C whencompared with water-dipped or untreated carrots, while N-6-benzyl-adenine (BA) dips stimulated extensive rooting and sprouting. In contrast, immersion in gibberellic acid (GA3) solutions had very little effect.Storage atmospheres containing 1, 2.5, 5 or 10% oxygen inhibited both sprouting and rooting but increased mould infection. Atmospheres containing 21% (air) or 40% oxygen reduced mould infection, but increased sprouting and rooting of stored carrots. Washing carrots in water before storage did not significantly affect mould infection, while washing in 0.5% clorox increased it. However, washing in water followed by immersion in MH inhibited both sprouting and rooting and also reduced mould infection. ‘Jumbo’ and large-size carrots stored better than medium and small carrots.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 449f-450
Author(s):  
Lisa M. Barry ◽  
Michael N. Dana

Legumes are grown as nurse crops in agriculture because they increase soil microbial life and productivity. Native legumes have potential in ecological restoration to mimic the benefits found in agriculture plus they enhance the restored ecosystem. This study was initiated to compare the growth rates, nodulation characteristics, and nitrogen fixation rates of a native versus a non-native legume. The two legumes were partridge pea (Cassia fasciculata); a native, wild, annual legume and soybean (Glycine max `Century Yellow); a domesticated, agricultural, annual legume native to Asia. Plants were grown for 11 weeks in pots containing silica sand and received a nitrogen-free Hoagland's nutrient solution. Beginning at week 12, plants were harvested weekly for four consecutive weeks. Nodulated root systems were exposed to acetylene gas and the resulting ethylene amounts were measured. The two legumes exhibited significant differences in nodule size and shape and plant growth rate. In soybean, nodules were large, spherical, and clustered around the taproot while in partridge pea, nodules were small, irregularly shaped, and spread throughout the fibrous root system. Soybean plants had a significantly faster growth rate at the onset of the experiment but partridge pea maintained a constant growth rate and eventually exceeded soybean plant size. In spite of these observed differences, partridge pea and soybean plants were equally efficient at reducing acetylene to ethylene. These results indicate partridge pea has the potential to produce as much nitrogen in the field as soybean. Native legumes such as partridge pea deserve further research to explore their use as nurse crops in agricultural or restoration regimes.


2021 ◽  
Vol 219 ◽  
pp. 112312
Author(s):  
Yinlong Xiao ◽  
Ying Du ◽  
Yue Xiao ◽  
Xiaohong Zhang ◽  
Jun Wu ◽  
...  

2017 ◽  
Vol 32 (2) ◽  
pp. 135-140 ◽  
Author(s):  
M. Ryan Miller ◽  
Jason K. Norsworthy

AbstractTo address recent concerns related to auxin herbicide drift onto soybean, a study was developed to understand the susceptibility of the reproductive stage of soybean to a new auxin herbicide compared with dicamba. Florpyrauxifen-benzyl is under development as the second herbicide in a new structural class of synthetic auxins, the arylpicolinates. Field studies were conducted to (1) evaluate and compare reproductive soybean injury and yield following applications of florpyrauxifen-benzyl or dicamba across various concentrations and reproductive growth stages and (2) determine whether low-rate applications of florpyrauxifen-benzyl or dicamba to soybean in reproductive stages would have similar effect on the progeny of the affected plants. Soybean were treated with 0, 1/20, or 1/160, of the 1X rate of florpyrauxifen-benzyl (30 g ai ha−1) or dicamba (560 g ae ha−1) at R1, R2, R3, R4, or R5 growth stage. Soybean plant height and yield was reduced from 1/20X dicamba across all reproductive stages. High drift rates (1/20X) of florpyrauxifen-benzyl also reduced soybean plant height >25% and yield across R1 to R4 stages. Germination, stand, plant height, and yield of the offspring of soybean plants treated with dicamba and florpyrauxifen-benzyl were significantly affected. Dicamba applied at a rate of 1/20X at R4 and R5 resulted in 20% and 35% yield reduction for the offspring, respectively. A similar reduction occurred from florpyrauxifen-benzyl applied at R4 and R5 at the 1/20X rate, resulting in 15% to 24% yield reduction for the offspring, respectively. Based on these findings, it is suggested that growers use caution when applying these herbicides in the vicinity of reproductive soybean.


Sign in / Sign up

Export Citation Format

Share Document