Soybean Sensitivity to Florpyrauxifen-benzyl during Reproductive Growth and the Impact on Subsequent Progeny

2017 ◽  
Vol 32 (2) ◽  
pp. 135-140 ◽  
Author(s):  
M. Ryan Miller ◽  
Jason K. Norsworthy

AbstractTo address recent concerns related to auxin herbicide drift onto soybean, a study was developed to understand the susceptibility of the reproductive stage of soybean to a new auxin herbicide compared with dicamba. Florpyrauxifen-benzyl is under development as the second herbicide in a new structural class of synthetic auxins, the arylpicolinates. Field studies were conducted to (1) evaluate and compare reproductive soybean injury and yield following applications of florpyrauxifen-benzyl or dicamba across various concentrations and reproductive growth stages and (2) determine whether low-rate applications of florpyrauxifen-benzyl or dicamba to soybean in reproductive stages would have similar effect on the progeny of the affected plants. Soybean were treated with 0, 1/20, or 1/160, of the 1X rate of florpyrauxifen-benzyl (30 g ai ha−1) or dicamba (560 g ae ha−1) at R1, R2, R3, R4, or R5 growth stage. Soybean plant height and yield was reduced from 1/20X dicamba across all reproductive stages. High drift rates (1/20X) of florpyrauxifen-benzyl also reduced soybean plant height >25% and yield across R1 to R4 stages. Germination, stand, plant height, and yield of the offspring of soybean plants treated with dicamba and florpyrauxifen-benzyl were significantly affected. Dicamba applied at a rate of 1/20X at R4 and R5 resulted in 20% and 35% yield reduction for the offspring, respectively. A similar reduction occurred from florpyrauxifen-benzyl applied at R4 and R5 at the 1/20X rate, resulting in 15% to 24% yield reduction for the offspring, respectively. Based on these findings, it is suggested that growers use caution when applying these herbicides in the vicinity of reproductive soybean.

2004 ◽  
Vol 18 (3) ◽  
pp. 527-531 ◽  
Author(s):  
Jason K. Norsworthy

Field studies were conducted to determine the sensitivity of conventional ‘Motte’ and ‘Pioneer 9831’ soybean to simulated glyphosate drift rates applied during vegetative and reproductive development and the effect of glyphosate on progeny. Glyphosate at 8, 84, and 420 g ae/ha was applied to soybean at the V3, V6, R2, and R5 growth stages. Glyphosate at 8 and 84 g/ha did not reduce soybean plant population, growth, or yield or cause deleterious effects on progeny, regardless of the growth stage at application. Soybean population, growth, and yield were reduced as much as 99 to 100% after application of 420 g/ha glyphosate at the V3 growth stage. Glyphosate at 420 g/ha applied at V6 was less detrimental to soybean compared with the V3 timing. Delaying the application of 420 g/ha glyphosate until R2 and R5 reduced soybean yields 22 to 49% and 43 to 44%, respectively. Soybean injury from 420 g/ha glyphosate was generally transient or less severe when applied at the V6 growth stage or later. However, 420 g/ha glyphosate at R5 (initial podfill) caused a 390 to 450 kg/ha yield reduction compared with the V6 application, which indicated greater soybean vulnerability to glyphosate drift during podfill than in the late-stage vegetative development. Although glyphosate at 420 g/ha was injurious to soybean, regardless of application timing, progeny was not affected.


2020 ◽  
Vol 5 (2) ◽  
pp. 107-114
Author(s):  
Jajuk Herawati ◽  
I. Indarwati ◽  
Tatuk Tojibatus S. ◽  
Mochamad Thohiron ◽  
Heru Prasetyo

Until now, soybean is still one of the priority food commodities in Indonesia. in the agricultural revitalization program launched by the government in 2005, due to the high price volatility that did not rule out the possibility of shaking the Indonesian economy. Soybean plants can provide positive and negative responses to environmental changes growing above and in the soil.  This response can be known from phenotypic and physiological changes in plants. The environment on land which influences the growth of soybean plants mainly is the duration and intensity of irradiation, air temperature, CO2 content in the atmosphere. The study aims to determine the impact of street lighting on the growth and yield of soybean plants.  The study used a Randomized Block Design Method with 3 treatments,  and each treatment was repeated 9 times, so that it takes 27 treatment plots. J0= Distance of street lighting to soybean land (meters), J1: 50 meters, J2: 60 meters, and J3: 70 meters.  Observations were made one week after planting at 7-day intervals for growth parameters (plant height and number of leaves), while for the production parameters (Number of Content Pods/Plants, Dry Weight (DW) 100 Seeds, DW Seeds/Plots, and DW Seeds/Ha) are carried out after harvest. From the results of the study it can be concluded that there are real differences in the parameters of growth and production (number of filled pods, DW 100 seeds, DW seeds/plot, and DW seeds/ha), where the J3 treatment is capable of producing 2.89 tons/ha (an increase in dry weight of seeds/ha by 28.4%), compared to J1 2.24 tonnes/ha , although not significantly different from Treatment  J2


Weed Science ◽  
1992 ◽  
Vol 40 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Gary M. Fellows ◽  
Fred W. Roeth

Shattercane interference in irrigated soybean was evaluated during 1987, 1988, and 1989 at Clay Center, NE, using ‘Rox’ forage sorghum to simulate shattercane. Soybean yield reduction did not occur if shattercane was removed by 2 wk after emergence in 1987 and 6 wk after emergence in 1988 and 1989. Shattercane interference with soybean began when shattercane height exceeded soybean height. Soybean yield was reduced up to 25% before the height differential reached 30 cm, the minimum difference required for selectively applying glyphosate with a wiper applicator. Soybean nodes per stem, pods per stem, and beans per pod decreased as duration of interference increased. A direct relationship between soybean yield loss and shattercane density fit a rectangular hyperbolic function. Yield loss per shattercane plant was highest at low shattercane densities. Soybean plant height, biomass, nodes per stem, pods per stem, pods per node, and beans per pod decreased as shattercane density increased. An interference model for estimation of soybean yield and economic loss based on shattercane density was developed.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 719-726 ◽  
Author(s):  
Amy D. Ziems ◽  
Loren J. Giesler ◽  
George L. Graef ◽  
Margaret G. Redinbaugh ◽  
Jean L. Vacha ◽  
...  

Bean pod mottle virus (BPMV) has become increasingly common in soybean throughout the north-central region of the United States. Yield loss assessments on southern soybean germplasm have reported reductions ranging from 3 to 52%. Currently, no soybean cultivars have been identified with resistance to BPMV. The objective of this study was to determine the impact of BPMV infection on soybean cultivars representing a broad range of northern soybean germ-plasm by comparing inoculated and noninoculated soybean plants in paired row studies. In all, 30 and 24 cultivars were evaluated in Nebraska (NE) in which soybean plants were inoculated at the V3 to V4 growth stage. Eleven cultivars from public and breeding lines were inoculated at the VC and R5 to R6 growth stages in Ohio (OH). Disease severity, yield, and percent seed coat mottling were assessed at both locations, whereas protein and oil content also were assessed at NE. Yield and percent seed coat mottling was significantly reduced following inoculation at the VC (OH) and V3 to V4 (NE) growth stages. In addition, seed oil and protein composition were impacted in 1 of the 2 years of the study. This study demonstrates that substantial yield losses can occur in soybean due to BPMV infection. In addition, protein and oil may be affected depending on the environment during the production season.


2021 ◽  
Author(s):  
Philip Kuriachen ◽  
Asha Devi ◽  
Anu Susan Sam ◽  
Suresh Kumar ◽  
Jyoti Kumari ◽  
...  

Abstract Climate change and consequent variations in temperature pose a significant challenge for sustaining wheat production systems globally. In this study, the potential impact of rising temperature on wheat yield in the north Indian plains, India's major wheat growing region, was analyzed using panel data from the year 1981 to 2009. This study deviates from the majority of the previous studies by including non-climatic factors in estimating the impact of climate change. Two temperature measures were used for fitting the function, viz., Growing Season Temperature (GST) and Terminal Stage Temperature (TST), to find out the differential impact of increased temperature at various growth stages. Analysis revealed that there was a significant rise in both GST as well as TST during the study period. The magnitude of the annual increment in TST was twice that of GST. Wheat yield growth in the region was driven primarily by increased input resources such as fertilizer application and technological development like improved varieties and management practices. Most importantly, the study found that the extent of yield reduction was more significant for an increase in temperature at terminal crop growth stages. The yield reduction due to unit increase in TST was estimated to be 2.26 % while rise in GST by 1◦C resulted in yield reduction of 2.03%.


2019 ◽  
Author(s):  
Fanjiang Kong ◽  
Qun Cheng ◽  
Lidong Dong ◽  
Tong Su ◽  
Zhuoran Gan ◽  
...  

Abstract Background: Soybean ( Glycine max ) is an important economically crops for plant oil and protein in the world. The plant height as a key trait has significant effects on yield of soybean , however, the research on molecular mechanism for soybean plant height is still unclear. Recently, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated) system as a new technology for gene editing, has been rapidly utilized to edit the genomes of crop plants. Results: Here, we designed four gRNAs to mutate four LATE ELONGATED HYPOCOTYL ( LHY ) / CIRCADIAN CLOCK ASSOCIATED1 ( CCA1 )- LIKE ( LCL ) genes in soybean. In order to test whether the gRNAs could perform properly in transgenic soybean plants, we first tested the CRISPR construct in transgenic soybean hairy roots using Agrobacterium rhizogenesis strain K599. Once confirmed, we performed stable soybean transformation and obtained nineteen independent transgenic soybean plants. Subsequently, we obtained one T 1 transgene-free homozygous quadruple mutant of GmLCL by self-crossed. The phenotype of T 2 -generation transgene-free quadruple mutant plants were observed and the results showed that quadruple mutant of GmLCL displayed reduced plant height and shortened internodes. In addition, the relative expression levels of gibberellic acid (GA) metabolic pathway genes in the quadruple mutant of GmLCL were significantly decreased than wild type (WT). It suggests that GmLCLs encoding MYB transcription factor affect plant height through mediating the GA pathway in soybean. We also develop some genetic markers to identify mutant for assisting breeding studies. Conclusions: Our results indicate that CRISPR/Cas9-mediated targeted mutagenesis of four GmLCL genes reduce soybean plant height and shorten internodes. These findings suggest that manipulation of four GmLCL genes may improve yield by altered plant height and internode length in soybean.


2012 ◽  
Vol 12 (1) ◽  
pp. 23-35
Author(s):  
Rosma Hasibuan ◽  
Jamalam Lumbanraja

Agricultural management cropping systems play an important role in affecting a crop plant’s ability to tolerate or resist insect pests.  Field studies were conducted to examine the effect of two strategies management systems: fertilizer treatment and intercropping soybean with corn on soybean  aphid (Aphis glycines Matsumura) population and soybean growth  and yield parameters. The intercropping treatments were: soybean alone; 2:1 soybean/corn intercrop; and 3:1 soybean/corn intercrop. While the soil fertility treatments were the combination of NPK (urea 100 kg ha-1 + SP-36 200 kg ha-1 + KCl 200 kg ha-1) levels, dolomite (4 ton ha-1), compost  (10 ton ha-1), and chicken manure (10 ton ha-1).  The results of the first study showed that the intercropping soybean with corn  significantly reduced the population density of soybean aphids. However, there were no significant effects of intercropping systems on soybean growth (plant height) and yield (number seed per pod and  thousand seed weight) performances except on the number of soybean pods per plant. Meanwhile, the result of the second study indicated that soil fertilizer treatments had  a significant effect on the soybean plant characteristics: leaf numbers; pod numbers; and plant height.  Combining  intercropping methods and soil fertilizer management offer an opportunity to protect the soybean plants by natural and sustainable pest management.


AgriPeat ◽  
2019 ◽  
Vol 19 (01) ◽  
pp. 30-36
Author(s):  
Administrator Journal

ABSTRACThis study aims to find the most potent combination of local microorganisms as a liquidbiofertilizer on marginal land, such as peatland. The study used Completely Randomized Design onpeat soil media in polybags, with 8 (eight) treatments and 4 (four) replicates, namely liquidbiofertilizer composition comprising a group of local microorganisms: 1) KHY, 2) IBT, 3) KHY +IBT, 4) KHY + IGT, 5) IBT + IGT, 6) KHY + IBT + IGT, 7) EM4 (Control +), 8) Aquadest(Controls -). The variables observed were plant height, number of leaves, number of branches,number of flowers of soybean crop. The results showed that the composition of the liquidbiofertilizer EM4 gave the best results on the parameters of plant height, the number of leaves, thenumber of branches, and the amount of flowers on soybean plants tested in peat soil media. Thecombined composition of local microorganisms KHY + IBT + IGT containing bacterial populationsof phosphate solvent, nitrogen-fixing bacteria, and cellulitic fungi, are still in the same group asEM4 in the treatment of the number of leaves and the number of plant flowers, therefore thecomposition of these potential local microorganisms is developed to become a liquid biofertilizerKeywords: Liquid Biofertilizer, Soybean Growth, Peat Land


2019 ◽  
Author(s):  
Qun Cheng ◽  
Lidong Dong ◽  
Tong Su ◽  
Tingyu Li ◽  
Zhuoran Gan ◽  
...  

Abstract Background: Soybean (Glycine max) is an economically important oil and protein crop. Plant height is a key trait that significantly impacts the yield of soybean; however, research on the molecular mechanisms associated with soybean plant height is lacking. The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated system 9) system is a recently developed technology for gene editing that has been utilized to edit the genomes of crop plants. Results: Here, we designed four gRNAs to mutate four LATE ELONGATED HYPOCOTYL (LHY) genes in soybean. In order to test whether the gRNAs could perform properly in transgenic soybean plants, we first tested the CRISPR construct in transgenic soybean hairy roots using Agrobacterium rhizogenes strain K599. Once confirmed, we performed stable soybean transformation and obtained 19 independent transgenic soybean plants. Subsequently, we obtained one T1 transgene-free homozygous quadruple mutant of GmLHY by self-crossing. The phenotypes of the T2-generation transgene-free quadruple mutant plants were observed, and the results showed that the quadruple mutant of GmLHY displayed reduced plant height and shortened internodes. The levels of endogenous gibberellic acid (GA3) in Gmlhy1a1b2a2b was lower than in the wild type (WT), and the shortened internode phenotype could be rescued by treatment with exogenous GA3. In addition, the relative expression levels of GA metabolic pathway genes in the quadruple mutant of GmLHY were significantly decreased in comparison to the WT. These results suggest that GmLHY encodes an MYB transcription factor that affects plant height through mediating the GA pathway in soybean. We also developed genetic markers for identifying mutants for application in breeding studies. Conclusions: Our results indicate that CRISPR/Cas9-mediated targeted mutagenesis of four GmLHY genes reduces soybean plant height and shortens internodes from 20 to 35 days after emergence (DAE). These findings provide insight into the mechanisms underlying plant height regulatory networks in soybean.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1095 ◽  
Author(s):  
Hongzheng Shen ◽  
Yizheng Chen ◽  
Yongqiang Wang ◽  
Xuguang Xing ◽  
Xiaoyi Ma

Drought and uneven distribution of precipitation during stages of crop growth exert a severe reduction on crop yield. It is therefore necessary to evaluate the impact of drought on crop yields. In this study, data from a two-year (2016 and 2017) field experiment were used to calibrate and evaluate the parameters of the Decision Support System for the Agrotechnology Transfer (DSSAT) model. The evaluation model was then employed to analyze the impact of potential drought on the yield of summer maize (Zea mays L.) over different growth stages for 46 years (1970–2015). The simulated summer maize flowering and harvest date differed by three and one days of the observed in 2017. The d-index value and the normalized root-mean-square error (nRMSE) of the simulated and measured values were 0.90 and 3.72%, 0.95 and 10.21%, and 0.92 and 13.12%, for summer maize yield, soil water content, and leaf area index, respectively. This indicates that the parameters of the DSSAT model were extremely reliable and that the simulation results were better. The yield reduction of summer maize was concentrated within the range of 0–40% from 1970 to 2015, and the two-stage yield reduction was higher than the one-stage yield reduction. The highest probability of yield reduction occurs if drought occurs during jointing and heading stages. Irrigation is therefore recommended during jointing stage or heading stage. If local irrigation conditions permit, irrigation can be carried out both at the jointing and heading stages. This study provides a theoretical basis for drought resistance management and scientific irrigation of summer maize in the western Guanzhong plain.


Sign in / Sign up

Export Citation Format

Share Document