scholarly journals Evaluation of statistical and geostatistical models of digital soil properties mapping in tropical mountain regions

2014 ◽  
Vol 38 (3) ◽  
pp. 706-717 ◽  
Author(s):  
Waldir de Carvalho Junior ◽  
Cesar da Silva Chagas ◽  
Philippe Lagacherie ◽  
Braz Calderano Filho ◽  
Silvio Barge Bhering

Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.

2014 ◽  
Vol 1 (1) ◽  
pp. 1-49 ◽  
Author(s):  
M. Holleran ◽  
M. Levi ◽  
C. Rasmussen

Abstract. Quantifying catchment scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high elevation forested catchment in southern AZ, USA using a combined set of digital soil mapping (DSM) and sampling design techniques to quantify catchment scale soil spatial variability. The study focused on a 6 ha catchment on granitic parent materials under mixed-conifer forest, with a mean elevation of 2400 m a.s.l., mean annual temperature of 10 °C and mean annual precipitation of ~ 85 cm yr−1. The sample design was developed using a unique combination of iterative principal component analysis (iPCA) of environmental covariates derived from remotely sensed imagery and topography, and a conditioned Latin Hypercube Sampling (cLHS) scheme. Samples were collected by genetic horizon from 24 soil profiles excavated to the depth of refusal and characterized for soil mineral assemblage, geochemical composition, and general soil physical and chemical properties. Soil properties were extrapolated across the entire catchment using a combination of least squares linear regression between soil properties and selected environmental covariates, and spatial interpolation or regression residual using inverse distance weighting (IDW). Model results indicated that convergent portions of the landscape contained deeper soils, higher clay and carbon content, and greater Na mass loss relative to adjacent slopes and divergent ridgelines. The results of this study indicated that: (i) the coupled application of iPCA and cLHS produced a sampling scheme that captured the majority of catchment scale soil variability; (ii) application of relatively simple regression models and IDW interpolation of residuals described well the variance in measured soil properties and predicted spatial correlation of soil properties to landscape structure; and (iii) at this scaleof observation, 6 ha catchment, topographic covariates explained more variation in soil properties than vegetation covariates. The DSM techniques applied here provide a framework for interpreting catchment scale variation in critical zone process and evolution. Future work will focus on coupling results from this coupled empirical-statistical approach to output from mechanistic, process-based numerical models of critical process and evolution.


2021 ◽  
Author(s):  
Istvan Dunkl ◽  
Mareike Ließ

Abstract. High resolution soil maps are urgently needed by land managers and researchers for a variety of applications. Digital Soil Mapping (DSM) allows to regionalize soil properties by relating them to environmental covariates with the help of an empirical model. In this study, a legacy soil data set was used to train a machine learning algorithm in order to predict the particle size distribution within the catchment of the Bode river in Saxony-Anhalt (Germany). The ensemble learning method random forest was used to predict soil texture based on environmental covariates originating from a digital elevation model, land cover data and geologic maps. We studied the usefulness of clustering applications in addressing various aspects of the DSM procedure. To investigate the role of the imbalanced data problem in the learning process, the environmental variables were used to cluster the landscape of the study area. Different sampling strategies were used to create balanced training data and were evaluated on their ability to improve model performance. Clustering applications were also involved in feature selection and stratified cross-validation. Overall, clustering applications appear to be a versatile tool to be employed at various steps of the DSM procedure. Beyond their successful application, further application fields in DSM were identified. One of them is to find adequate means to include expert knowledge.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 47-64 ◽  
Author(s):  
M. Holleran ◽  
M. Levi ◽  
C. Rasmussen

Abstract. Quantifying catchment-scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high-elevation forested catchment in southern Arizona, USA, using a combined set of digital soil mapping (DSM) and sampling design techniques to quantify catchment-scale soil spatial variability that would inform interpretation of soil-forming processes. The study focused on a 6 ha catchment on granitic parent materials under mixed-conifer forest, with a mean elevation of 2400 m a.s.l, mean annual temperature of 10 °C, and mean annual precipitation of ~ 85 cm yr−1. The sample design was developed using a unique combination of iterative principal component analysis (iPCA) of environmental covariates derived from remotely sensed imagery and topography, and a conditioned Latin hypercube sampling (cLHS) scheme. Samples were collected by genetic horizon from 24 soil profiles excavated to the depth of refusal and characterized for soil mineral assemblage, geochemical composition, and general soil physical and chemical properties. Soil properties were extrapolated across the entire catchment using a combination of least-squares linear regression between soil properties and selected environmental covariates, and spatial interpolation or regression residual using inverse distance weighting (IDW). Model results indicated that convergent portions of the landscape contained deeper soils, higher clay and carbon content, and greater Na mass loss relative to adjacent slopes and divergent ridgelines. The results of this study indicated that (i) the coupled application of iPCA and cLHS produced a sampling scheme that captured the greater part of catchment-scale soil variability; (ii) application of relatively simple regression models and IDW interpolation of residuals described well the variance in measured soil properties and predicted spatial correlation of soil properties to landscape structure; and (iii) at this scale of observation, 6 ha catchment, topographic covariates explained more variation in soil properties than vegetation covariates. The DSM techniques applied here provide a framework for interpreting catchment-scale variation in critical zone process and evolution. Future work will focus on coupling results from this coupled empirical–statistical approach to output from mechanistic, process-based numerical models of critical zone process and evolution.


2021 ◽  
Author(s):  
B Kalaiselvi ◽  
S. Dharumarajan ◽  
M. Lalitha ◽  
R. Sriniv ◽  
R. Vasundhara ◽  
...  

Abstract Knowledge on spatial distribution of soil depth, coarse fragments and texture are crucial for land resource management and environmental soil modeling. Digital soil mapping approach helps in prediction of spatial soil information by establishing the relationship between soil and environmental covariates. In the present study, we assessed spatial distribution of soil depth, coarse fragments (CF) and soil textural classes over 0.13 M sq.km area of Tamil Nadu state. About 2100 samples were used for the prediction of soil properties using random forest model (RF). Out of which, 80 per cent samples were used for training and 20 percent samples were used for testing. Different environmental covariates such as digital elevation model outputs, landsat data and bioclimatic variables were related to predict the soil properties. The predicted soil depth and CF ranged from 46-200 cm and 1-42 per cent respectively. The RF model performed well by explaining the variability (R 2 ) of 43% for soil depth and 21% for coarse fragments with RMSE of 38 cm and 13%, respectively. The RF classifier classified the soil textural classes with 64% overall accuracy and 43% kappa index. Variable importance ranking of Random forest model showed that elevation, MrVBF are the important predictors used for prediction of soil depth and CF, whereas remote sensing vegetation indices such as NDVI, EVI were acted as primary variable for prediction of soil textural classes. In this study, 250 m resolution detailed soil depth, CF and textural class maps were prepared which will be useful for different environmental modeling and proper agricultural management purposes.


2021 ◽  
Vol 13 (11) ◽  
pp. 2088
Author(s):  
Carlos Quemada ◽  
José M. Pérez-Escudero ◽  
Ramón Gonzalo ◽  
Iñigo Ederra ◽  
Luis G. Santesteban ◽  
...  

This paper reviews the different remote sensing techniques found in the literature to monitor plant water status, allowing farmers to control the irrigation management and to avoid unnecessary periods of water shortage and a needless waste of valuable water. The scope of this paper covers a broad range of 77 references published between the years 1981 and 2021 and collected from different search web sites, especially Scopus. Among them, 74 references are research papers and the remaining three are review papers. The different collected approaches have been categorized according to the part of the plant subjected to measurement, that is, soil (12.2%), canopy (33.8%), leaves (35.1%) or trunk (18.9%). In addition to a brief summary of each study, the main monitoring technologies have been analyzed in this review. Concerning the presentation of the data, different results have been obtained. According to the year of publication, the number of published papers has increased exponentially over time, mainly due to the technological development over the last decades. The most common sensor is the radiometer, which is employed in 15 papers (20.3%), followed by continuous-wave (CW) spectroscopy (12.2%), camera (10.8%) and THz time-domain spectroscopy (TDS) (10.8%). Excluding two studies, the minimum coefficient of determination (R2) obtained in the references of this review is 0.64. This indicates the high degree of correlation between the estimated and measured data for the different technologies and monitoring methods. The five most frequent water indicators of this study are: normalized difference vegetation index (NDVI) (12.2%), backscattering coefficients (10.8%), spectral reflectance (8.1%), reflection coefficient (8.1%) and dielectric constant (8.1%).


2020 ◽  
Vol 12 (12) ◽  
pp. 2015 ◽  
Author(s):  
Manuel Ángel Aguilar ◽  
Rafael Jiménez-Lao ◽  
Abderrahim Nemmaoui ◽  
Fernando José Aguilar ◽  
Dilek Koc-San ◽  
...  

Remote sensing techniques based on medium resolution satellite imagery are being widely applied for mapping plastic covered greenhouses (PCG). This article aims at testing the spectral consistency of surface reflectance values of Sentinel-2 MSI (S2 L2A) and Landsat 8 OLI (L8 L2 and the pansharpened and atmospherically corrected product from L1T product; L8 PANSH) data in PCG areas located in Spain, Morocco, Italy and Turkey. The six corresponding bands of S2 and L8, together with the normalized difference vegetation index (NDVI), were generated through an OBIA approach for each PCG study site. The coefficient of determination (r2) and the root mean square error (RMSE) were computed in sixteen cloud-free simultaneously acquired image pairs from the four study sites to evaluate the coherence between the two sensors. It was found that the S2 and L8 correlation (r2 > 0.840, RMSE < 9.917%) was quite good in most bands and NDVI. However, the correlation of the two sensors fluctuated between study sites, showing occasional sun glint effects on PCG roofs related to the sensor orbit and sun position. Moreover, higher surface reflectance discrepancies between L8 L2 and L8 PANSH data, mainly in the visible bands, were always observed in areas with high-level aerosol values derived from the aerosol quality band included in the L8 L2 product (SR aerosol). In this way, the consistency between L8 PANSH and S2 L2A was improved mainly in high-level aerosol areas according to the SR aerosol band.


2015 ◽  
Vol 8 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Wilfredo Robles ◽  
John D. Madsen ◽  
Ryan M. Wersal

Waterhyacinth is a free-floating aquatic weed that is considered a nuisance worldwide. Excessive growth of waterhyacinth limits recreational use of water bodies as well as interferes with many ecological processes. Accurate estimates of biomass are useful to assess the effectiveness of control methods to manage this aquatic weed. While large water bodies require significant labor inputs with respect to ground-truth surveys, available technology like remote sensing could be capable of providing temporal and spatial information from a target area at a much reduced cost. Studies were conducted at Lakes Columbus and Aberdeen (Mississippi) during the growing seasons of 2005 and 2006 over established populations of waterhyacinth. The objective was to estimate biomass based on nondestructive methods using the normalized difference vegetation index (NDVI) derived from Landsat 5 TM simulated data. Biomass was collected monthly using a 0.10m2 quadrat at 25 randomly-located locations at each site. Morphometric plant parameters were also collected to enhance the use of NDVI for biomass estimation. Reflectance measurements using a hyperspectral sensor were taken every month at each site during biomass collection. These spectral signatures were then transformed into a Landsat 5 TM simulated data set using MatLab® software. A positive linear relationship (r2 = 0.28) was found between measured biomass of waterhyacinth and NDVI values from the simulated dataset. While this relationship appears weak, the addition of morphological parameters such as leaf area index (LAI) and leaf length enhanced the relationship yielding an r2 = 0.66. Empirically, NDVI saturates at high LAI, which may limit its use to estimate the biomass in very dense vegetation. Further studies using NDVI calculated from narrower spectral bands than those contained in Landsat 5 TM are recommended.


Author(s):  
Juan Pablo Gonzalez ◽  
Andy Jarvis ◽  
Simon E. Cook ◽  
Thomas Oberthür ◽  
Mauricio Rincon-Romero ◽  
...  

2016 ◽  
Vol 14 (3) ◽  
pp. e0907 ◽  
Author(s):  
Mostafa K. Mosleh ◽  
Quazi K. Hassan ◽  
Ehsan H. Chowdhury

This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh.


2021 ◽  
Vol 42 (4) ◽  
pp. 2181-2202
Author(s):  
Taiara Souza Costa ◽  
◽  
Robson Argolo dos Santos ◽  
Rosângela Leal Santos ◽  
Roberto Filgueiras ◽  
...  

This study proposes to estimate the actual crop evapotranspiration, using the SAFER model, as well as calculate the crop coefficient (Kc) as a function of the normalized difference vegetation index (NDVI) and determine the biomass of an irrigated maize crop using images from the Operational Land Imager (OLI) and Thermal Infrared (TIRS) sensors of the Landsat-8 satellite. Pivots 21 to 26 of a commercial farm located in the municipalities of Bom Jesus da Lapa and Serra do Ramalho, west of Bahia State, Brazil, were selected. Sowing dates for each pivot were arranged as North and South or East and West, with cultivation starting firstly in one of the orientations and subsequently in the other. The relationship between NDVI and the Kc values obtained in the FAO-56 report (KcFAO) revealed a high coefficient of determination (R2 = 0.7921), showing that the variance of KcFAO can be explained by NDVI in the maize crop. Considering the center pivots with different planting dates, the crop evapotranspiration (ETc) pixel values ranged from 0.0 to 6.0 mm d-1 during the phenological cycle. The highest values were found at 199 days of the year (DOY), corresponding to around 100 days after sowing (DAS). The lowest BIO values occur at 135 DOY, at around 20 DAS. There is a relationship between ETc and BIO, where the DOY with the highest BIO are equivalent to the days with the highest ETc values. In addition to this relationship, BIO is strongly influenced by soil water availability.


Sign in / Sign up

Export Citation Format

Share Document