scholarly journals Estimating the Biomass of Waterhyacinth (Eichhornia crassipes) Using the Normalized Difference Vegetation Index Derived from Simulated Landsat 5 TM

2015 ◽  
Vol 8 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Wilfredo Robles ◽  
John D. Madsen ◽  
Ryan M. Wersal

Waterhyacinth is a free-floating aquatic weed that is considered a nuisance worldwide. Excessive growth of waterhyacinth limits recreational use of water bodies as well as interferes with many ecological processes. Accurate estimates of biomass are useful to assess the effectiveness of control methods to manage this aquatic weed. While large water bodies require significant labor inputs with respect to ground-truth surveys, available technology like remote sensing could be capable of providing temporal and spatial information from a target area at a much reduced cost. Studies were conducted at Lakes Columbus and Aberdeen (Mississippi) during the growing seasons of 2005 and 2006 over established populations of waterhyacinth. The objective was to estimate biomass based on nondestructive methods using the normalized difference vegetation index (NDVI) derived from Landsat 5 TM simulated data. Biomass was collected monthly using a 0.10m2 quadrat at 25 randomly-located locations at each site. Morphometric plant parameters were also collected to enhance the use of NDVI for biomass estimation. Reflectance measurements using a hyperspectral sensor were taken every month at each site during biomass collection. These spectral signatures were then transformed into a Landsat 5 TM simulated data set using MatLab® software. A positive linear relationship (r2 = 0.28) was found between measured biomass of waterhyacinth and NDVI values from the simulated dataset. While this relationship appears weak, the addition of morphological parameters such as leaf area index (LAI) and leaf length enhanced the relationship yielding an r2 = 0.66. Empirically, NDVI saturates at high LAI, which may limit its use to estimate the biomass in very dense vegetation. Further studies using NDVI calculated from narrower spectral bands than those contained in Landsat 5 TM are recommended.

2021 ◽  
Author(s):  
Giuseppe Francesco Cesare Lama

<p>The interplay between riparian vegetation and water flow in vegetated water bodies has a key role in the dynamic evolution of aquatic and terrestrial ecosystems in wetlands and lowlands. The present study analyzes the effects of the spatial distribution of reed (<em>Phragmites australis</em> (Cav.) Trin. ex Steud.) beds, an invasive riparian species extremely widespread in wetland and lowlands worldwide, on the main hydraulic and hydrodynamic properties of an abandoned vegetated reclamation channel located in Northern Tuscany, Italy. A field campaign was carried out to obtain Leaf Area Index (LAI) and Normalized Difference Vegetation Index (NDVI) of reed beds through both ground-based and Unmanned Aerial Vehicle (UAV) methodologies, and to correlate them to the channel’s flow dynamic and water quality main features. Then, Hydrodynamic simulations of the vegetated reclamation channel were performed and validated based on the experimental measurements of the hydraulic and vegetational parameters acquired in the field to build up a robust model to be employed also in future Ecohydraulic researches. The evidences of this study constitute useful insights in the quantitative analysis of the correlation between the spatial distribution of riparian vegetation stands in natural and manmade vegetated water bodies and their hydrodynamic and water quality main features.</p>


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1333
Author(s):  
Giuseppe Francesco Cesare Lama ◽  
Mariano Crimaldi ◽  
Vittorio Pasquino ◽  
Roberta Padulano ◽  
Giovanni Battista Chirico

Estimating the main hydrodynamic features of real vegetated water bodies is crucial to assure a balance between their hydraulic conveyance and environmental quality. Riparian vegetation stands have a high impact on vegetated channels. The present work has the aim to integrate riparian vegetation’s reflectance indices and hydrodynamics of real vegetated water flows to assess the impact of riparian vegetation morphometry on bulk drag coefficients distribution along an abandoned vegetated drainage channel fully covered by 9–10 m high Arundo donax (commonly known as giant reed) stands, starting from flow average velocities measurements at 30 cross-sections identified along the channel. A map of riparian vegetation cover was obtained through digital processing of Unnamed Aerial Vehicle (UAV)-acquired multispectral images, which represent a fast way to observe riparian plants’ traits in hardly accessible areas such as vegetated water bodies in natural conditions. In this study, the portion of riparian plants effectively interacting with flow was expressed in terms of ground-based Leaf Area Index measurements (LAI), which easily related to UAV-based Normalized Difference Vegetation Index (NDVI). The comparative analysis between Arundo donax stands NDVI and LAI map enabled the analysis of the impact of UAV-acquired multispectral imagery on bulk drag predictions along the vegetated drainage channel.


2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


2021 ◽  
Vol 13 (4) ◽  
pp. 719
Author(s):  
Xiuxia Li ◽  
Shunlin Liang ◽  
Huaan Jin

Leaf area index (LAI) and normalized difference vegetation index (NDVI) are key parameters for various applications. However, due to sensor tradeoff and cloud contaminations, these data are often temporally intermittent and spatially discontinuous. To address the discontinuities, this study proposed a method based on spectral matching of 30 m discontinuous values from Landsat data and 500 m temporally continuous values from Moderate-resolution Imaging Spectroradiometer (MODIS) data. Experiments have proven that the proposed method can effectively yield spatiotemporally continuous vegetation products at 30 m spatial resolution. The results for three different study areas with NDVI and LAI showed that the method performs well in restoring the time series, fills in the missing data, and reasonably predicts the images. Remarkably, the proposed method could address the issue when no cloud-free data pairs are available close to the prediction date, because of the temporal information “borrowed” from coarser resolution data. Hence, the proposed method can make better use of partially obscured images. The reconstructed spatiotemporally continuous data have great potential for monitoring vegetation, agriculture, and environmental dynamics.


2021 ◽  
Author(s):  
Brianna Pagán ◽  
Adekunle Ajayi ◽  
Mamadou Krouma ◽  
Jyotsna Budideti ◽  
Omar Tafsi

<p>The value of satellite imagery to monitor crop health in near-real time continues to exponentially grow as more missions are launched making data available at higher spatial and temporal scales. Yet cloud cover remains an issue for utilizing vegetation indexes (VIs) solely based on optic imagery, especially in certain regions and climates. Previous research has proven the ability to reconstruct VIs like the Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) by leveraging synthetic aperture radar (SAR) datasets, which are not inhibited by cloud cover. Publicly available data from SAR missions like Sentinel-1 at relatively decent spatial resolutions present the opportunity for more affordable options for agriculture users to integrate satellite imagery in their day to day operations. Previous research has successfully reconstructed optic VIs (i.e. from Sentinel-2) with SAR data (i.e. from Sentinel-1) leveraging various machine learning approaches for a limited number of crop types. However, these efforts normally train on individual pixels rather than leveraging information at a field level. </p><p>Here we present Beyond Cloud, a product which is the first to leverage computer vision and machine learning approaches in order to provide fused optic and SAR based crop health information. Field level learning is especially well-suited for inherently noisy SAR datasets. Several use cases are presented over agriculture fields located throughout the United Kingdom, France and Belgium, where cloud cover limits optic based solutions to as little as 2-3 images per growing season. Preliminary efforts for additional features to the product including automated crop and soil type detection are also discussed. Beyond Cloud can be accessed via a simple API which makes integration of the results easy for existing dashboards and smart-ag tools. Overall, these efforts promote the accessibility of satellite imagery for real agriculture end users.</p><p> </p>


Author(s):  
Román Alejandro Canul-Turriza ◽  
Francisco Javier Barrera-Lao ◽  
Gabriela Patricia Aldana Narváez

This paper presents the identification of heat islands in the city of San Francisco de Campeche, period 1990 - 2020 and their relationship with changes in the vegetation cover areas. To identify the heat islands in the city, 6 Landsat 5 (TM), 7 (TM) and 8 (OIL) images were obtained from the USGS database (http://earthexplorer.usgs.gov/). In geographic information software, soil temperature was calculated from a mathematical algorithm applied to thermal infrared bands 6 and 10, in addition, the Normalized Difference Vegetation Index (NDVI) was calculated, in order to find a relationship between changes in temperature and vegetation cover. It was found that the green areas have reduced their surface by more than 50% and the soil temperature has increased up to 7 ° C


2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Nnadozie Onyiri

This study has produced a map of malaria prevalence in Nigeria based on available data from the Mapping Malaria Risk in Africa (MARA) database, including all malaria prevalence surveys in Nigeria that could be geolocated, as well as data collected during fieldwork in Nigeria between March and June 2007. Logistic regression was fitted to malaria prevalence to identify significant demographic (age) and environmental covariates in STATA. The following environmental covariates were included in the spatial model: the normalized difference vegetation index, the enhanced vegetation index, the leaf area index, the land surface temperature for day and night, land use/landcover (LULC), distance to water bodies, and rainfall. The spatial model created suggests that the two main environmental covariates correlating with malaria presence were land surface temperature for day and rainfall. It was also found that malaria prevalence increased with distance to water bodies up to 4 km. The malaria risk map estimated from the spatial model shows that malaria prevalence in Nigeria varies from 20% in certain areas to 70% in others. The highest prevalence rates were found in the Niger Delta states of Rivers and Bayelsa, the areas surrounding the confluence of the rivers Niger and Benue, and also isolated parts of the north-eastern and north-western parts of the country. Isolated patches of low malaria prevalence were found to be scattered around the country with northern Nigeria having more such areas than the rest of the country. Nigeria’s belt of middle regions generally has malaria prevalence of 40% and above.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 192 ◽  
Author(s):  
Abdulwahab S. Shaibu ◽  
Clay Sneller ◽  
Babu N. Motagi ◽  
Jackline Chepkoech ◽  
Mercy Chepngetich ◽  
...  

In order to integrate genomics in breeding and development of drought-tolerant groundnut genotypes, identification of genomic regions/genetic markers for drought surrogate traits is essential. We used 3249 diversity array technology sequencing (DArTSeq) markers for a genetic analysis of 125 ICRISAT groundnut mini core collection evaluated in 2015 and 2017 for genome-wide marker-trait association for some physiological traits and to determine the magnitude of linkage disequilibrium (LD). Marker-trait association (MTA) analysis, probability values, and percent variation modelled by the markers were calculated using the GAPIT package via the KDCompute interface. The LD analysis showed that about 36% of loci pairs were in significant LD (p < 0.05 and r2 > 0.2) and 3.14% of the pairs were in complete LD. The MTAs studies revealed 20 significant MTAs (p < 0.001) with 11 markers. Four MTAs were identified for leaf area index, 13 for canopy temperature, one for chlorophyll content and two for normalized difference vegetation index. The markers explained 20.8% to 6.6% of the phenotypic variation observed. Most of the MTAs identified on the A subgenome were also identified on the respective homeologous chromosome on the B subgenome. This could be due to a common ancestor of the A and B genome which explains the linkage detected between markers lying on different chromosomes. The markers identified in this study can serve as useful genomic resources to initiate marker-assisted selection and trait introgression of groundnut for drought tolerance after further validation.


2020 ◽  
Vol 12 (24) ◽  
pp. 4170
Author(s):  
Pengfei Chen ◽  
Fangyong Wang

Although textural information can be used to estimate vegetation biomass, its use for estimating crop biomass is rare, and previous methods lacked a mechanistic explanation for the relationship to biomass. The objective of the present study was to develop mechanistic textural indices for estimating cotton biomass and solving saturation problems at medium and high biomass levels. A nitrogen (N) fertilization experiment was established, and unmanned aerial vehicle optical images and field measured biomass data were obtained during critical cotton growth stages. Based on these data, two textural indices, namely the normalized difference texture index combining contrast and the inverse difference moment of the green band (NBTI (CON, IDM)g) and normalized difference texture index combining entropy and the inverse difference moment of the green band (NBTI (ENT, IDM)g), were proposed by analyzing the mechanism of texture parameters for biomass prediction and the law of texture parameters changing with biomass. These indices were compared with spectral indices commonly used for biomass estimation using independent validation data, such as the normalized difference vegetation index (NDVI). The results showed that the proposed textural indices performed better than the spectral indices with no saturation problems occurring. The combination of spectral and textural indices using a stepwise regression method performed better for biomass estimation than using only spectral or textural indices. This method has considerable potential for improving the accuracy of biomass estimations for the subsequent delineation of precise cotton management zones.


Sign in / Sign up

Export Citation Format

Share Document