scholarly journals Influence of row spacing reduction on maize grain yield in regions with a short summer

2001 ◽  
Vol 36 (6) ◽  
pp. 861-869 ◽  
Author(s):  
Luís Sangoi ◽  
Márcio Ender ◽  
Altamir Frederico Guidolin ◽  
Milton Luiz de Almeida ◽  
Pedro Canísio Heberle

The interest in reducing maize row spacing in the short growing season regions of Brazil is increasing due to potential advantages such as higher radiation use efficiency. This experiment was conducted to evaluate the effect of row spacing reduction on grain yield of different maize cultivars planted at different dates. The trial was conducted in Lages, in the State of Santa Catarina, Brazil, during 1996/97 and 1997/98 growing seasons, in a split-split plot design. Early (October 1st) and normal (November 15) planting dates were tested in the main plot; two morphologically contrasting cultivars (an early single-cross and a late double-cross hybrids) were evaluated in the split plots and three row widths (100, 75 and 50 cm) were studied in the split-split plots. The reduction of row spacing from 100 to 50 cm increased linearly maize grain yield. The yield edge provided by narrow rows was higher when maize was sown earlier in the season. Differences in hybrid cycle and plant architecture did not alter maize response to the reduction of row spacing.

2011 ◽  
Vol 37 (1) ◽  
pp. 152-157 ◽  
Author(s):  
You-Liang YE ◽  
Yu-Fang HUANG ◽  
Chun-Sheng LIU ◽  
Ri-Tao QU ◽  
Hai-Yan SONG ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1459
Author(s):  
Heba S. A. Salama ◽  
Ali I. Nawar ◽  
Hassan E. Khalil ◽  
Ahmed M. Shaalan

The sequence of the preceding crops in a no-tillage farming system, could interact with the integrated use of mineral and organic nitrogen (N) sources in a way that improves the growth and productivity of the terminal maize crop, meanwhile, enhancing its N use efficiency (NUE). In the current study, six legume-cereal crop sequences, including faba bean, soybean, Egyptian clover, wheat, and maize were evaluated along two experimental rotations that ended up by planting the terminal maize crop. In addition, the effects of applying variable mineral nitrogen (MN) rates with and without the incorporation of farmyard manure (FYM) on the productive performance of maize and its NUE were tested. The field experiments were conducted in a no-tillage irrigated farming system in Northern Egypt, a location that is characterized by its arid, Mediterranean climate. Results revealed that increasing the legume component in the evaluated crop sequences, up to 75%, resulted in improved maize ear leaf area, 1000-grain weight, and harvest index, thus, a higher final grain yield, with the inclusion of Egyptian clover was slightly better than faba bean. Comparing the crop sequences with 50% legume contribution uncovered the positive effects of soybean preceding crop on the terminal maize crop. Substituting 25% of the applied MN with FYM resulted in similar maize yields to the application of the equivalent 100% MN rates. The fertilizer treatments significantly interacted with the crop sequences in determining the maize grain yield, where the highest legume crop contribution in the crop sequence (75%) equalized the effects of the different fertilizer treatments on maize grain yield. The integrated use of FYM with MN in maize fertilization improved the NUE compared to the application of MN alone. Comparing fertilization treatments with similar MN content, with and without FYM, revealed that the difference in NUE was attributed to the additional amount of FYM. In similar conditions to the current study, it is recommended to grow faba bean two years before maize, while Egyptian clover could be grown directly preceding maize growth, with frequent inclusion of soybean in the sequence, this could be combined with the application of an average of 200 kg MN ha−1 in addition to FYM.


Crop Science ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 2806-2819 ◽  
Author(s):  
Baoyuan Zhou ◽  
Di Ma ◽  
Xuefang Sun ◽  
Zaisong Ding ◽  
Congfeng Li ◽  
...  

2020 ◽  
Vol 38 ◽  
Author(s):  
L. SANGOI ◽  
M.M. DURLI ◽  
C.A. SOUZA ◽  
L.S. LEOLATO ◽  
H.F. KUNESKI ◽  
...  

ABSTRACT: High nitrogen rates favor maize vegetative growth and grain yield losses due to stem lodging. The use of growth regulators can mitigate such effect. This work was carried out aiming to evaluate the effect of trinexapac ethyl on maize hybrids response to side-dress nitrogen rates. The experiment was carried out in Lages, Santa Catarina State, South of Brazil, during two growing seasons with two hybrids (P1680 and P30F53), and four nitrogen rates (0, 150, 300 and 450 kg N ha-1) were tested, with and without the presence of trinexapac ethyl. The experimental design was in randomized blocks arranged in split-split plots, with three replications per treatment. The plants height and ear insertion height, plant lodging and breaking, grain yield and yield components were evaluated. Grain yield increased in a quadratic way with increased nitrogen rate. The highest grain yields were 15,784 and 15,257 kg ha-1, in 2014/15 and 2015/16, respectively. Application rates higher than 150 kg of N ha-1, regardless of the use of the plant growth regulator, promoted maximum grain yield increases, ranging from 14.7 to 18.1%. The application of trinexapac-ethyl reduced the upper stem internode length, 1000-grain dry weight and did not affect the percentage of lodged plants and grain yield of both hybrids. Therefore, the use of trinexapac-ethyl did not enhance the maize grain yield response to increased rates of side-dress nitrogen.


2021 ◽  
Vol 20 (12) ◽  
pp. 3156-3169
Author(s):  
Yue-e LIU ◽  
Peng HOU ◽  
Gui-rong HUANG ◽  
Xiu-li ZHONG ◽  
Hao-ru LI ◽  
...  

2022 ◽  
pp. 256-269
Author(s):  
Peter Kuria ◽  
Josiah Gitari ◽  
Saidi Mkomwa ◽  
Peter Waweru

Abstract Low and unreliable rainfall, along with poor soil health, is a main constraint to maize production in the semi-arid parts of Kenya that account for over 79% of the country's land area. In the vast county of Laikipia, farmers continue to plant maize despite the predominantly low quantities of precipitation. Participatory farmer experimentation with Conservation Agriculture (CA) was undertaken for six consecutive growing seasons between July 2013 and December 2016 to determine the effectiveness of CA as a method of improving soil properties and enhancing maize yields with the limited rainfall quantities received in these parts of Kenya. The main CA practices tested include chisel tine furrow opening (ripping) and live legume (Lablab purpureus) cover crop, as well as maize stover mulches, all implemented under varying inorganic fertilizer rates. The research was done across 12 administrative locations of Laikipia County where soils are mainly Phaeozems and Vertisols with a clay-loam texture. The research design used was researcher-designed and farmer-managed. In each of the 12 trial sites, participatory farmers' assessments and field days were carried out as a way of outreach to the bigger farming communities around the trial sites. The research findings obtained demonstrated that the use of CA impacts positively on soil properties and is a viable practice for enhancing maize yields in these moisture deficit-prone parts of the country. Soil chemical analysis assessment results showed that CA impacted positively on a number of soil mineral components including organic carbon, total nitrogen, phosphorus, potassium, calcium and pH. Midseason chlorophyll content assessment of the maize crop showed that there was good response to fertilizer application, as well as to mulching with crop residues for soil cover. Maize grain yield data also showed that the use of a CA package comprising chisel tine ripping combined with mulching by plant residues and use of mineral fertilizer resulted in a two- to threefold increase in grain yields above the farmer practice control. Mean maize grain yield in farmer practice plots was 1067 kg ha-1 compared with the CA-treated plot with mineral fertilization that yielded 2192 kg ha-1.


Author(s):  
Mawazo Shitindi ◽  
Kokoasse Kpomblekou-A ◽  
Wendell H. McElhenney ◽  
Ramble Ankumah ◽  
Johnson Semoka ◽  
...  

A study was conducted to evaluate maize response to leguminous biomass composted with phosphate rocks (PRs) in a split plot design. Field experiments were conducted at Wang’waray Farmers Training Center (F.T.C) located in Babati District of Manyara region in the Northern zone of Tanzania between December 2013 and June 2015. Three leguminous (Crotalaria juncea, Lablab purpureus and Mucuna pruriens) strips were cultivated in 2013/14 to produce a biomass which was harvested at flowering to early podding stage and air dried.  Air-dry biomass was composted with PRs from Minjingu (medium reactive PR) and Panda Hill (low reactive PR). Maize response to different treatments was evaluated across the field strips in 2014/15 season. The strips previously used to produce leguminous biomass were used as main plots and each strip was divided into seven subplots receiving different treatments at random. A medium term maize variety SC. 627 was used as a test crop. Average maize grain yields obtained from Crotalaria, Lablab and Mucuna strips reached 5.3, 4.5 and 4.0 t ha-1, respectively and were statistically different (P=.05). Application of Minjingu or Panda Hill PR alone didn’t increase maize grain yield above the control while Minjingu PR applied with urea or composted with biomass increased maize grain yield by 2.40 and 1.58 t ha-1, respectively above the control. Application of Panda Hill PR with urea or composted with biomass increased grain yield by 1.20 and 1.06 t ha-1, respectively above the control. The observed differences (0.82 and 0.14 t ha-1) were not statistically significant indicating that biomass composted with PR was as effective as the PR applied with urea.


Sign in / Sign up

Export Citation Format

Share Document