scholarly journals Dried powders of velvetbean and pine bark added to soil reduce Rhizoctonia solani-induced disease on soybean

2006 ◽  
Vol 31 (3) ◽  
pp. 261-269 ◽  
Author(s):  
Luiz E. B. Blum ◽  
Rodrígo Rodríguez-Kábana

Diseases induced by Rhizoctonia solani, like damping-off and root and stem rot on soybean (Glycine max), are a serious problem around the world. The addition of some organic material to soil is an alternative control for these diseases. In this study, benzaldehyde and dried powders of kudzu (Pueraria lobata), velvetbean or mucuna (Mucuna deeringiana), and pine bark (Pinus spp.) were used in an attempt to improve soybean plant growth and to reduce the disease R. solani (AG-4) causes on soybean. Benzaldehyde (0.1-0.4 mL/kg of soil) and velvetbean (25-100 g/kg) significantly (P < 0.05) reduced mycelial growth of R. solani in laboratory tests. In greenhouse experiments, the percentage of non-diseased plants was higher in treatments with pine bark and velvetbean (50-100 g/kg). In soil treated with kudzu (r²=0.91) or velvetbean (r²=0.94), increasing rates of these amendments tended to increase plant fresh mass. In microplot field conditions, soil amended with velvetbean (r²=0.85) and pine-bark (r²=0.61) significantly reduced disease on soybean. Numbers of Bacillus megaterium (r²=0.87) and Trichoderma hamatum (r²=0.92) and hydrolysis of fluorescein diacetate (r²=0.91) were higher in soil amended with increasing rates of velvetbean, indicating an increase in microbial activity. From this study it is concluded that dried powders of velvetbean and pine bark added to soil can reduce Rhizoctonia-induced disease on soybean.

2016 ◽  
Vol 15 (2) ◽  
pp. 164
Author(s):  
Amran Muis ◽  
Nurasiah Djaenuddin ◽  
Nurnina Nonci

Evaluation of five inner carriers and Bacillus subtilis formulation to control banded leaf and sheath blight (Rhizoctonia solani Kuhn). One alternative control method against plant pathogens is the use of antagonistic microorganisms, such as Bacillus subtilis. The use of the antagonistic bacteria on corn especially in Indonesia is still lack. The objective of this research was to evaluate some inner carrier and to make formulated antagonistic B. subtilis to be used as biological control agents on corn diseases. This research consists of laboratory and greenhouse activities. The laboratory activities consist of B. subtilis biomass production, formulation of B. subtilis, and evaluation of five types of inner carrier. In the greenhouse, testing the formulation B. subtilis with talc as an inner carrier, which is compared with the treatment solution of B. subtilis, nordox, metalaxyl fungicides. The data collected in this study were percentage of germination, damping off due to pathogen R. solani, plant height, plant fresh weight, and percentages of R. solani incidence on 14 DAP. The results showed that talc powder and corn flour were the best inner carrier to be used in sorage formulation of antagonistic Bacillus. Formulated Bacillus subtilis TM4 showed no negative affect on seed germination and able to suppress the development of R. solani in greenhouse.


2001 ◽  
Vol 91 (11) ◽  
pp. 1116-1123 ◽  
Author(s):  
Matthew S. Krause ◽  
Laurence V. Madden ◽  
Harry A. J. Hoitink

Potting mixes prepared with dark, highly decomposed Sphagnum peat, with light, less decomposed Sphagnum peat, or with composted pine bark, all three of which were colonized by indigenous microorganisms, failed to consistently suppress Rhizoctonia damping-off of radish or Rhizoctonia crown and root rot of poinsettia. Inoculation of these mixes with Chryseobacterium gleum (C299R2) and Trichoderma hamatum 382 (T382) significantly reduced the severity of both diseases in the composted pine bark mix in which both biocontrol agents maintained high populations over 90 days. These microorganisms were less effective against damping-off in the light and dark peat mixes, respectively, in which populations of C299R2 declined. In contrast, crown and root rot, a disease that is severe late in the crop, was suppressed in all three types of mixes. High populations of T382 in all three mixes late during the cropping cycle may have contributed to control of this disease.


2006 ◽  
Vol 96 (12) ◽  
pp. 1372-1379 ◽  
Author(s):  
Masahiro Kasuya ◽  
Andriantsoa R. Olivier ◽  
Yoko Ota ◽  
Motoaki Tojo ◽  
Hitoshi Honjo ◽  
...  

Suppressive effects of soil amendment with residues of 12 cultivars of Brassica rapa on damping-off of sugar beet were evaluated in soils infested with Rhizoctonia solani. Residues of clover and peanut were tested as noncruciferous controls. The incidence of damping-off was significantly and consistently suppressed in the soils amended with residues of clover, peanut, and B. rapa subsp. rapifera ‘Saori’, but only the volatile substance produced from water-imbibed residue of cv. Saori exhibited a distinct inhibitory effect on mycelial growth of R. solani. Nonetheless, disease suppression in such residue-amended soils was diminished or nullified when antibacterial antibiotics were applied to the soils, suggesting that proliferation of antagonistic bacteria resident to the soils were responsible for disease suppression. When the seed (pericarps) colonized by R. solani in the infested soil without residues were replanted into the soils amended with such residues, damping-off was suppressed in all cases. In contrast, when seed that had been colonized by microorganisms in the soils containing the residues were replanted into the infested soil, damping-off was not suppressed. The evidence indicates that the laimosphere, but not the spermosphere, is the site for the antagonistic microbial interaction, which is the chief principle of soil suppressiveness against Rhizoctonia damping-off.


Sugar Tech ◽  
2021 ◽  
Author(s):  
Md Ehsanul Haque ◽  
Dilip K. Lakshman ◽  
Aiming Qi ◽  
Mohamed F. R. Khan

2018 ◽  
Vol 40 (1) ◽  
pp. 35075 ◽  
Author(s):  
Alexandre Dinnys Roese ◽  
Paulo Justiniano Ribeiro Junior ◽  
Vanderley Porfírio-da-Silva ◽  
Louise Larissa May De Mio

Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2427-2433 ◽  
Author(s):  
Sahar Arabiat ◽  
Mohamed F. R. Khan

Rhizoctonia damping-off and crown and root rot caused by Rhizoctonia solani are major diseases of sugar beet (Beta vulgaris L.) worldwide, and growers in the United States rely on fungicides for disease management. Sensitivity of R. solani to fungicides was evaluated in vitro using a mycelial radial growth assay and by evaluating disease severity on R. solani AG 2-2 inoculated plants treated with fungicides in the greenhouse. The mean concentration that caused 50% mycelial growth inhibition (EC50) values for baseline isolates (collected before the fungicides were registered for sugar beet) were 49.7, 97.1, 0.3, 0.2, and 0.9 μg ml−1 and for nonbaseline isolates (collected after registration and use of fungicides) were 296.1, 341.7, 0.9, 0.2, and 0.6 μg ml−1 for azoxystrobin, trifloxystrobin, pyraclostrobin, penthiopyrad, and prothioconazole, respectively. The mean EC50 values of azoxystrobin, trifloxystrobin, and pyraclostrobin significantly increased in the nonbaseline isolates compared with baseline isolates, with a resistant factor of 6.0, 3.5, and 3.0, respectively. Frequency of isolates with EC50 values >10 μg ml−1 for azoxystrobin and trifloxystrobin increased from 25% in baseline isolates to 80% in nonbaseline isolates. Although sensitivity of nonbaseline isolates of R. solani to quinone outside inhibitors decreased, these fungicides at labeled rates were still effective at controlling the pathogen under greenhouse conditions.


Sign in / Sign up

Export Citation Format

Share Document