scholarly journals Estrus cycle monitoring of captive collared peccaries (Pecari tajacu) in semiarid conditions

2014 ◽  
Vol 34 (11) ◽  
pp. 1115-1120 ◽  
Author(s):  
Keilla M. Maia ◽  
Gislayne C.X. Peixoto ◽  
Lívia B. Campos ◽  
José Artur B. Bezerra ◽  
Aracelly R.F. Ricarte ◽  
...  

Collared peccaries (Peccary tajacu) are among the most hunted species in Latin America due the appreciation of their pelt and meat. In order to optimize breeding management of captive born collared peccaries in semiarid conditions, the objective was to describe and correlate the changes in the ovarian ultrasonographic pattern, hormonal profile, vulvar appearance, and vaginal cytology during the estrus cycle in this species. During 45 days, females (n=4) were subjected each three days to blood collection destined to hormonal dosage by enzyme immunoassay (EIA). In the same occasions, evaluation of external genitalia, ovarian ultrasonography and vaginal cytology were conducted. Results are presented as means and standard deviations. According to hormonal dosage, six estrous cycles were identified as lasting 21.0 ± 5.7 days, being on average 6 days for the estrogenic phase and 15 days for the progesterone phase. Estrogen presented mean peak values of 55.6 ± 20.5 pg/mL. During the luteal phase, the high values for progesterone were 35.3 ± 4.4 ng/mL. The presence of vaginal mucus, a reddish vaginal mucosa and the separation of the vulvar lips were verified in all animals during the estrogenic peak. Through ultrasonography, ovarian follicles measuring 0.2±0.1 cm were visualized during the estrogen peak. Corpora lutea presented hyperechoic regions measuring 0.4±0.2 cm identified during luteal phase. No significant differences (P>0.05) between proportions of vaginal epithelial cells were identified when comparing estrogenic and progesterone phases. In conclusion, female collared peccaries, captive born in semiarid conditions, have an estral cycle that lasts 21.0±5.7 days, with estrous signs characterized by vulvar lips edema and hyperemic vaginal mucosa, coinciding with developed follicles and high estrogen levels.

Reproduction ◽  
2000 ◽  
pp. 49-57 ◽  
Author(s):  
SD Johnston ◽  
MR McGowan ◽  
P O'Callaghan ◽  
R Cox ◽  
V Nicolson

As an integral part of the development of an artificial insemination programme in the captive koala, female reproductive physiology and behaviour were studied. The oestrous cycle in non-mated and mated koalas was characterized by means of behavioural oestrus, morphology of external genitalia and changes in the peripheral plasma concentrations of oestradiol and progestogen. The mean (+/- SEM) duration of the non-mated oestrous cycle and duration of oestrus in 12 koalas was 32.9 +/- 1.1 (n = 22) and 10.3 +/- 0.9 (n = 24) days, respectively. Although the commencement of oestrous behaviour was associated with increasing or high concentrations of oestradiol, there were no consistent changes in the morphology or appearance of the clitoris, pericloacal region, pouch or mammary teats that could be used to characterize the non-mated cycle. As progestogen concentrations remained at basal values throughout the interoestrous period, non-mated cycles were considered non-luteal and presumed anovulatory. After mating of the 12 koalas, six females gave birth with a mean (+/- SEM) gestation of 34.8 +/- 0.3 days, whereas the remaining six non-parturient females returned to oestrus 49.5 +/- 1. 0 days later. After mating, oestrous behaviour ceased and the progestogen profile showed a significant increase in both pregnant and non-parturient females, indicating that a luteal phase had been induced by the physical act of mating. Progestogen concentrations throughout the luteal phase of the pregnant females were significantly higher than those of non-parturient females. Parturition was associated with a decreasing concentration of progestogen, which was increased above that of basal concentrations until 7 days post partum.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Heather C. M. Allaway ◽  
Roger A. Pierson ◽  
Jesse Invik ◽  
Susan A. Bloomfield

Abstract Background Long-acting, reversible contraceptives (LARC; progestin only) are an increasingly common hormonal contraceptive choice in reproductive aged women looking to suppress ovarian function and menstrual cyclicity. The overall objective was to develop and validate a rodent model of implanted etonogestrel (ENG) LARC, at body size equivalent doses to the average dose received by women during each of the first 3 years of ENG subdermal rod LARC use. Methods Intact, virgin, female Sprague-Dawley rats (16-wk-old) were randomized to 1 of 4 groups (n = 8/group) of ENG LARC (high-0.30μg/d, medium-0.17μg/d, low-0.09μg/d, placebo-0.00μg/d) via a slow-release pellet implanted subcutaneously. Animals were monitored for 21 days before and 29 days following pellet implantation using vaginal smears, ultrasound biomicroscopy (UBM), saphenous blood draws, food consumption, and body weights. Data were analyzed by chi-square, non-parametric, univariate, and repeated measures 2-way ANOVA. Results Prior to pellet implantation there was no difference in time spent in estrus cycle phases among the treatment groups (p > 0.30). Following pellet implantation there was a dose-dependent impact on the time spent in diestrus and estrus (p < 0.05), with the high dose group spending more days in diestrus and fewer days in estrus. Prior to pellet insertion there was not an association between treatment group and estrus cycle classification (p = 0.57) but following pellet implantation there was a dose-dependent association with cycle classification (p < 0.02). Measurements from the UBM (ovarian volume, follicle count, corpora lutea count) indicate an alteration of ovarian function following pellet implantation. Conclusion Assessment of estrus cyclicity indicated a dose-response relationship in the shift to a larger number of acyclic rats and longer in duration spent in the diestrus phase. Therefore, each dose in this model mimics some of the changes observed in the ovaries of women using ENG LARC and provides an opportunity for investigating the impacts on non-reproductive tissues in the future.


1981 ◽  
Vol 91 (2) ◽  
pp. 197-203 ◽  
Author(s):  
M. C. RICHARDSON ◽  
G. M. MASSON

Cell suspensions were prepared from tissue samples of human corpora lutea obtained during the mid- and late-luteal phase of the menstrual cycle. Both oestradiol and progesterone production by dispersed cells were stimulated by similar concentrations of human chorionic gonadotrophin (hCG). As the degree of stimulation of production by hCG was greater for progesterone than for oestradiol (five- to tenfold compared with two- to threefold higher than basal production), the ratio of progesterone to oestradiol produced varied according to the level of trophic stimulation. A comparison of cell suspensions prepared from mid- and late-luteal phase corpora lutea, exposed to the same concentration of hCG (10 i.u./ml) in vitro, did not reveal a shift to oestradiol production in the late-luteal phase. Provision of additional testosterone during incubation raised the level of oestradiol production by dispersed luteal cells. At an optimum concentration of testosterone (1 μmol/l), oestradiol synthesis was not raised further in the presence of hCG or N6, O2-dibutyryl cyclic AMP, suggesting a lack of induction or activation of the aromatase system by gonadotrophin in short-term cultures. Basal and stimulated levels of progesterone production were not significantly impaired in the presence of testosterone.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Masaki Nakamura ◽  
Yuji Hakozaki ◽  
Shohei Iwata ◽  
Yusuke Sato ◽  
Katsuhiro Makino ◽  
...  

Abstract Background Vulvar Paget’s disease (VPD) is a rare malignant disorder originating in the external genitalia. It occasionally invades into urethral or vaginal mucosa of female, making surgical treatment more complicating. In case of urethral invasion of Paget’s cells, systematic mapping biopsy of urethral mucosa is the standard of care to determine the range of surgical resection. Resection of urethral mucosa and simple skin grafting often result in urethral stricture after surgery, which severely deteriorates patient’s quality of life. Case presentation We applied a new technique of advancement urethral meatoplasty using buccal mucosa, in two Japanese cases of VPD with urethral invasion. After broad resection of vulvar skin together with the urethral mucosa, buccal mucosa was implanted between advanced urethral mucosa and skin graft. In both cases, we could prevent urethral stricture one year and two years after surgery, respectively. Conclusion This technique prevented urethral stricture after surgery and could be a useful technique as part of urethroplasty for VPD.


1991 ◽  
Vol 260 (3) ◽  
pp. E464-E470 ◽  
Author(s):  
R. R. Magness ◽  
C. R. Rosenfeld ◽  
B. R. Carr

Elevated uterine blood flow is associated with increases in local estrogen-to-progesterone ratios during the follicular phase of the ovarian cycle and late pregnancy. Because protein kinase C (PKC) activation increases arterial tone, decreased PKC activity may mediate vasodilation. Therefore, we determined uterine (UA) and systemic artery (SA, omental) PKC activity (pmol.mg protein-1.min-1) during the follicular (n = 6), early luteal (n = 4), and late luteal (n = 3) phases of the sheep ovarian cycle, and at 110 +/- 3 (n = 4) and 130 +/- 1 (n = 8) (+/- SE) days of ovine gestation. The stage of the ovarian cycle was verified by the presence of follicles (high estrogen) or corpora lutea (high progesterone) on the ovary and by plasma estrogen and progesterone concentrations. UA-PKC activity (pmol.mg protein-1.min-1) during the follicular phase was 100 +/- 18 and increased progressively to 155 +/- 28 during the early luteal phase and to 219 +/- 37 (P less than 0.05) during the late luteal phase; SA-PKC activity was unchanged. A local utero-ovarian relationship was observed, i.e., UA-PKC activity was lower (P less than 0.001) in UA ipsilateral to ovaries with only follicles (105 +/- 14) when compared with UA adjacent to ovaries with corpora lutea (224 +/- 26), which was similar to SA-PKC activity (184 +/- 35). UA-PKC activity fell from 344 +/- 70 at 110 days to 109 +/- 12 at 130 days gestation (P less than 0.05); SA-PKC activity was unchanged. During the ovarian cycle and latter one-third of ovine pregnancy, increased estrogen production is associated with decreased UA-PKC activity; thus local ovarian and placental steroids may alter PKC activity, thereby regulating UA tone and blood flow.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Tongku N. Siregar ◽  
Juli Melia ◽  
Rohaya ◽  
Cut Nila Thasmi ◽  
Dian Masyitha ◽  
...  

The aim of this study was to investigate the period of estrus cycle in aceh cattle, Indonesia, based on vaginal cytology techniques. Four healthy females of aceh cattle with average weight of 250–300 kg, age of 5–7 years, and body condition score of 3-4 were used. All cattle were subjected to ultrasonography analysis for the occurrence of corpus luteum before being synchronized using intramuscular injections of PGF2 alpha 25 mg. A vaginal swab was collected from aceh cattle, stained with Giemsa 10%, and observed microscopically. Period of estrus cycle was predicted from day 1 to day 24 after estrus synchronization was confirmed using ultrasonography analysis at the same day. The result showed that parabasal, intermediary, and superficial epithelium were found in the vaginal swabs collected from proestrus, metestrus, and diestrus aceh cattle. Proportions of these cells in the particular period of estrus cycle were 36.22, 32.62, and 31.16 (proestrus); 21.33, 32.58, and 46.09 (estrus); 40.75, 37.58, and 21.67 (metestrus); and 41.07, 37.38, and 21.67 (diestrus), respectively. In conclusion, dominant proportion of superficial cell that occurred in estrus period might be used as the base for determining optimal time for insemination.


1997 ◽  
Vol 45 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Firyal S. Khan-Dawood ◽  
Jun Yang ◽  
M. Yusoff Dawood

We have recently shown the presence of E-cadherin and of α- and γ-catenins in human and baboon corpora lutea. These are components of adherens junctions between cells. The cytoplasmic catenins link the cell membrane-associated cadherins to the actin-based cytoskeleton. This interaction is necessary for the functional activity of the E-cad-herins. Our aim therefore was to determine the presence of α-actin in the baboon corpus luteum, to further establish whether the necessary components for E-cadherin activity are present in this tissue. An antibody specific for the smooth muscle isoform of actin, α-actin, was used for these studies. The results using immunohistochemistry show that (a) α-actin is present in steroidogenic cells of the active corpus luteum, theca externa of the corpus luteum, cells of the vasculature, and the tunica albuginea surrounding the ovary. The intensity of immunoreactivity for α-actin varied, with the cells of the vasculature reacting more intensely than the luteal cells. A difference in intensity of immunoreactivity was also observed among the luteal cells, with the inner granulosa cells showing stronger immunoreactivity than the peripheral theca lutein cells. There was no detectable immunoreactivity in the steroidogenic cells of the atretic corpus luteum. However, in both the active and atretic corpora lutea, α-actin-positive vascular cells were dispersed within the tissue. (b) Total α-actin (luteal and non-luteal), as determined by Western blot analyses, does not change during the luteal phase and subsequent corpus luteum demise (atretic corpora lutea). (c) hCG stimulated the expression of α-actin and progesterone secretion by the early luteal phase (LH surge + 1–5 days) and midluteal phase (LH surge + 6–10 days) cells in culture, but only progesterone in the late luteal phase (LH surge + 11–15 days). The data show that α-actin is present in luteal cells and that its expression is regulated by hCG, thus suggesting that E-cadherin may form functional adherens junctions in the corpus luteum.


1995 ◽  
Vol 7 (3) ◽  
pp. 303 ◽  
Author(s):  
RT Gemmell

The corpus luteum (CL) is a transitory organ which has a regulatory role in reproduction. Sharks, amphibians and reptiles have corpora lutea that produce progesterone which influences the rate of embryonic development. The egg-laying monotremes and the two major mammalian groups, eutherian and marsupial, have a CL that secretes progesterone. Most eutherians have allowed for the uterine development of their young by extending the length of the oestrous cycle and the CL or placenta actively secretes progesterone until birth. Gestation in the marsupial does not extend beyond the length of an oestrous cycle and the major part of fetal development takes place in the pouch. Where the extension of the post-luteal phase in the eutherian has allowed for the uterine development of young, the marsupial has extended the pre-luteal phase of the oestrous cycle and has evolved an alternative reproductive strategy, embryonic diapause. The mechanism for the secretion of hormones from the CL has been controversial for many years. Densely-staining secretory granules have been observed in the CL of sharks, marsupials and eutherians. These granules have been reported to contain relaxin, oxytocin or mesotocin, and progesterone. A hypothesis to suit all available data is that all hormones secreted by the CL are transported within such granules. In conclusion, although there are obvious differences in the mode of reproduction in the two main mammalian groups, it is apparent that there is a great deal of similarity in the hormonal control of regression of the CL and parturition.


Reproduction ◽  
2001 ◽  
pp. 777-783 ◽  
Author(s):  
DE Hickford ◽  
NE Merry ◽  
MH Johnson ◽  
L Selwood

Induced ovulation resulting in normal embryos is rare in marsupials. In this study natural and induced ovulations were compared in mature Sminthopsis macroura (n = 122). Comparison of maturation of preovulatory oocytes by ovarian histology and examination of oocytes removed from developing follicles in 12 ovaries of 23 animals receiving 0.058 iu equine serum gonadotrophin (eSG) g(-1) with ovaries of 12 animals undergoing natural cycles showed that oocyte maturation was significantly more irregular when it was induced (P < 0.001). Postovulatory stages were examined by estimating the number of eggs ovulated from ovarian histology, and by counting oviduct and uterine contents recovered after ovulation. S. macroura receiving 0.087 iu eSG g(-1) (n = 34), administered as one (n = 17) or two (n = 17) injections, were significantly (P < 0.05) more likely to ovulate (74%), mate (80%) and have conceptuses (66%) than were animals receiving 0.058 iu eSG g(-1) (12, 53 and 0%, respectively) (n = 17), and the values were similar to those in animals (n = 36) undergoing natural cycles (100, 81 and 56%, respectively). Induced ovulation using 0.087 iu eSG g(-1) yielded significantly (P < 0.05) more oocytes per ovary (20.8 +/- 8.5; combined data) than did ovulation in animals undergoing natural cycles (13.7 +/- 3.2) (ANOVA, t test). The responses of animals induced in different phases of the oestrous cycle with 0.087 iu eSG g(-1) were not significantly different (ANOVA) with respect to the number of corpora lutea per ovary, conceptuses per animal or days to ovulation after injection. However, the proportion of females that responded after receiving 0.058 iu eSG g(-1) in the luteal phase was significantly different from that in animals treated with the same dose in the intermediate phase (P < 0.01) and in non-cyclic females treated with 0.058 iu eSG g(-1) (P < 0.02). The main benefits of the treatment were that normal embryos resulted and that 70-78% of non-cyclic animals could be induced to ovulate.


1996 ◽  
Vol 148 (1) ◽  
pp. 59-67 ◽  
Author(s):  
W C Duncan ◽  
A S McNeilly ◽  
P J Illingworth

Abstract Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a specific inhibitor of a group of proteolytic enzymes known as matrix metalloproteinases. These enzymes have been widely implicated in the process of tissue remodelling. Extensive remodelling occurs in the corpus luteum during luteolysis unless human chorionic gonadotrophin (hCG) is produced by the early conceptus. This study aimed to investigate the expression and localisation of TIMP-1 in human corpora lutea during the luteal phase of the cycle and after luteal rescue with exogenous hCG to mimic the changes of early pregnancy. Human corpora lutea from the early (n = 4), mid- (n=4) and late (n=4) luteal phases and after luteal rescue by hCG (n=4) were obtained at the time of hysterectomy. Expression of TIMP-1 was investigated in these tissues by Western blotting, immunohistochemistry, Northern blotting and in situ hybridisation. Luteal cells of thecal origin were distinguished from those of granulosa origin by immunostaining for 17α-hydroxylase. A 30 kDa protein consistent with TIMP-1 was detected in human corpora lutea. This protein was localised to the granulosa lutein cells in all tissues examined. TIMP-1 mRNA was found in large quantities in all glands examined and this again localised to the granulosa lutein cells. The expression and localisation of TIMP-1 did not change throughout the luteal phase and was not altered by luteal rescue. The function of this uniform expression of TIMP-1 in the corpus luteum is not clear but these data suggest that the inhibition of structural luteolysis during maternal recognition of pregnancy is not mediated by regulation of TIMP-1 expression. Journal of Endocrinology (1996) 148, 59–67


Sign in / Sign up

Export Citation Format

Share Document