scholarly journals Decreased levels of pNR1 S897 protein in the cortex of neonatal Sprague Dawley rats with hypoxic-ischemic or NMDA-induced brain damage

2012 ◽  
Vol 45 (10) ◽  
pp. 962-967 ◽  
Author(s):  
Ming-Yan Hei ◽  
Hui-Kang Tao ◽  
Qin Tang ◽  
Bo Yu ◽  
Ling-Ling Zhao
2013 ◽  
Vol 304 (12) ◽  
pp. E1331-E1337 ◽  
Author(s):  
Candace M. Reno ◽  
Tariq Tanoli ◽  
Adam Bree ◽  
Dorit Daphna-Iken ◽  
Chen Cui ◽  
...  

Brain damage due to severe hypoglycemia occurs in insulin-treated people with diabetes. This study tests the hypothesis that chronic insulin therapy that normalizes elevated blood glucose in diabetic rats would be neuroprotective against brain damage induced by an acute episode of severe hypoglycemia. Male Sprague-Dawley rats were split into three groups: 1) control, non-diabetic; 2) STZ-diabetic; and 3) insulin-treated STZ-diabetic. After 3 wk of chronic treatment, unrestrained awake rats underwent acute hyperinsulinemic severe hypoglycemic (10–15 mg/dl) clamps for 1 h. Rats were subsequently analyzed for brain damage and cognitive function. Severe hypoglycemia induced 15-fold more neuronal damage in STZ-diabetic rats compared with nondiabetic rats. Chronic insulin treatment of diabetic rats, which nearly normalized glucose levels, markedly reduced neuronal damage induced by severe hypoglycemia. Fortunately, no cognitive defects associated with the hypoglycemia-induced brain damage were observed in any group. In conclusion, antecedent blood glucose control represents a major modifiable therapeutic intervention that can afford diabetic subjects neuroprotection against severe hypoglycemia-induced brain damage.


2009 ◽  
Vol 297 (1) ◽  
pp. E194-E201 ◽  
Author(s):  
Adam J. Bree ◽  
Erwin C. Puente ◽  
Dorit Daphna-Iken ◽  
Simon J. Fisher

Insulin-induced severe hypoglycemia causes brain damage. The hypothesis to be tested was that diabetes portends to more extensive brain tissue damage following an episode of severe hypoglycemia. Nine-week-old male streptozotocin-diabetic (DIAB; n = 10) or vehicle-injected control (CONT; n = 7) Sprague-Dawley rats were subjected to hyperinsulinemic (0.2 U·kg−1·min−1) severe hypoglycemic (10–15 mg/dl) clamps while awake and unrestrained. Groups were precisely matched for depth and duration (1 h) of severe hypoglycemia (CONT 11 ± 0.5 and DIAB 12 ± 0.2 mg/dl, P = not significant). During severe hypoglycemia, an equal number of episodes of seizure-like activity were noted in both groups. One week later, histological analysis demonstrated extensive neuronal damage in regions of the hippocampus, especially in the dentate gyrus and CA1 regions and less so in the CA3 region ( P < 0.05), although total hippocampal damage was not different between groups. However, in the cortex, DIAB rats had significantly (2.3-fold) more dead neurons than CONT rats ( P < 0.05). There was a strong correlation between neuronal damage and the occurrence of seizure-like activity ( r2 > 0.9). Separate studies conducted in groups of diabetic ( n = 5) and nondiabetic ( n = 5) rats not exposed to severe hypoglycemia showed no brain damage. In summary, under the conditions studied, severe hypoglycemia causes brain damage in the cortex and regions within the hippocampus, and the extent of damage is closely correlated to the presence of seizure-like activity in nonanesthetized rats. It is concluded that, in response to insulin-induced severe hypoglycemia, diabetes uniquely increases the vulnerability of specific brain areas to neuronal damage.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yun Han ◽  
Xiao-kun Geng ◽  
Hangil Lee ◽  
Fengwu Li ◽  
Yuchuan Ding

Background and Purpose. Studies have shown that interischemia hypothermia is able to reduce the size of myocardial infarctions and improve their clinical outcomes. The present study determined whether interischemia hypothermia induced by the pharmacological approach induced stronger neuroprotection in ischemic brains. Methods. Adult male Sprague Dawley rats were studied in 4 groups: (1) sham; (2) stroke; (3) stroke treated with pharmacological hypothermia before reperfusion (interischemia hypothermia); and (4) stroke treated with pharmacological hypothermia after reperfusion is initiated (inter-reperfusion hypothermia). The combination of chlorpromazine and promethazine with dihydrocapsaicin (DHC) was used to induce hypothermia. To compare the neuroprotective effects of drug-induced hypothermia between the interischemia and inter-reperfusion groups, brain damage was evaluated using infarct volume and neurological deficits at 24 h reperfusion. In addition, mRNA expressions of NADPH oxidase (NOX) subunits (gp91phox, p67phox, p47phox, and p22phox) and glucose transporter subtypes (GLUT1 and GLUT3) were determined by real-time PCR at 6 and 24 h reperfusion. ROS production was measured by flow cytometry assay at the same time points. Results. In both hypothermia groups, the cerebral infarct volumes and neurological deficits were reduced in the ischemic rats. At 6 and 24 h reperfusion, ROS production and the expressions of NOX subunits and glucose transporter subtypes were also significantly reduced in both hypothermia groups as compared to the ischemic group. While there were no statistically significant differences between the two hypothermia groups at 6 h reperfusion, brain damage was significantly further decreased by interischemia hypothermia at 24 h. Conclusion. Both interischemia and inter-reperfusion pharmacological hypothermia treatments play a role in neuroprotection after stroke. Interischemia hypothermia treatment may be better able to induce stronger neuroprotection after ischemic stroke. This study provides a new avenue and reference for stronger neuroprotective hypothermia before vascular recanalization in stroke patients.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Shu Yang ◽  
Honglin Dong ◽  
Luyu Yao ◽  
Xin Gu ◽  
Runhua Shi ◽  
...  

Objectives: The nature and feature between cholesterol and blood clot emboli are significantly different. The aim of this study was to investigate if any difference in ischemic brain damage caused by cholesterol emboli vs. clot emboli. Methods: Embolic stroke model was created using Sprague-Dawley rats. They were randomly divided into control (Ctrl), cholesterol emboli (ChE), and clot emboli (ClE) groups. Plaques and blood samples were collected from the patients who underwent carotid endarterectomy. Plaques were rinsed and heated at 100 o C for 60 minutes to denature protein. Plaques and blood clots were broken into 0.30 - 0.35mm and diluted into a final concentration of 1,000 fragments per 100μL. Normal saline, the cholesterol emboli and blood clot emboli suspensions (300μL) were separately injected, according to different groups, into rat brains via left internal carotid artery. The animals were sacrificed at 24 hours post injection and brain ischemia was assessed using pathological H/E staining. Neuropathologic injury in hippocampus (CA1, CA2, CA3, and DG) was scored from 1 to 5 (Figure 1). Results: The brain injury scores of the three groups were analyzed using Student-Newman-Keuls Test. Both ClE and ChE groups had significant higher injury scores compared to Ctrl group (p<0.05, respectively). The Injury score of ChE group was significantly higher than that of ClE group (p<0.05) (Figure 1). Conclusions: The findings suggest that cholesterol embolization results in more severe damage in rat brain, compared to blood clot embolization. It may imply that clinical presentations and treatment outcomes of embolic strokes can be affected by different sources of emboli.


2014 ◽  
Vol 66 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Khaled Radad ◽  
Khaled Hassanein ◽  
Mubarak Al-Shraim ◽  
Rudolf Moldzio ◽  
Wolf-Dieter Rausch

Author(s):  
D. J. McComb ◽  
J. Beri ◽  
F. Zak ◽  
K. Kovacs

Investigation of the spontaneous pituitary adenomas in rat have been limited mainly to light microscopic study. Furth et al. (1973) described them as chromophobic, secreting prolactin. Kovacs et al. (1977) in an ul trastructural investigation of adenomas of old female Long-Evans rats, found that they were composed of prolactin cells. Berkvens et al. (1980) using immunocytochemistry at the light microscopic level, demonstrated that some spontaneous tumors of old Wistar rats could contain GH, TSH or ACTH as well as PRL.


Author(s):  
F. G. Zaki ◽  
E. Detzi ◽  
C. H. Keysser

This study represents the first in a series of investigations carried out to elucidate the mechanism(s) of early hepatocellular damage induced by drugs and other related compounds. During screening tests of CNS-active compounds in rats, it has been found that daily oral administration of one of these compounds at a dose level of 40 mg. per kg. of body weight induced diffuse massive hepatic necrosis within 7 weeks in Charles River Sprague Dawley rats of both sexes. Partial hepatectomy enhanced the development of this peculiar type of necrosis (3 weeks instead of 7) while treatment with phenobarbital prior to the administration of the drug delayed the appearance of necrosis but did not reduce its severity.Electron microscopic studies revealed that early development of this liver injury (2 days after the administration of the drug) appeared in the form of small dark osmiophilic vesicles located around the bile canaliculi of all hepatocytes (Fig. 1). These structures differed from the regular microbodies or the pericanalicular multivesicular bodies. They first appeared regularly rounded with electron dense matrix bound with a single membrane. After one week on the drug, these vesicles appeared vacuolated and resembled autophagosomes which soon developed whorls of concentric lamellae or cisterns characteristic of lysosomes (Fig. 2). These lysosomes were found, later on, scattered all over the hepatocytes.


Author(s):  
D. J. McComb ◽  
J. Beri ◽  
F. Zak ◽  
K. Kovacs

Gonadotroph cell adenomas of the pituitary are infrequent in human patients and are not invariably associated with altered gonadal function. To date, no animal model of this tumor type exists. Herein, we describe spontaneous gonadotroph cell adenomas in old male and female Sprague-Dawley rats by histology, immunocytology and electron microscopy.The material consisted of the pituitaries of 27 male and 38 female Sprague Dawley rats, all 26 months of age or older, removed at routine autopsy. Sections of formal in-fixed, paraffin-embedded tissue were stained with hematoxylin-phloxine-saffron (HPS), the PAS method and the Gordon-Sweet technique for the demonstration of reticulin fibers. For immunostaining, sections were exposed to anti-rat β-LH, anti-ratβ-TSH, anti-rat PRL, anti-rat GH and anti-rat ACTH 1-39. For electron microscopy, tissue was fixed in 2.5% glutaraldehyde, postfixed in 1% OsO4 and embedded in epoxy-resin. Tissue fixed in 10% formalin, embedded in epoxy resin without osmification, was used for immunoelectron microscopy.


Author(s):  
Russell N. A. Cecil ◽  
H. Clarke Anderson

Unfixed proximal tibial epiphyseal growth plates were studied by freeze-etch to confirm the presence of extracellular calcifying matrix vesicles and to determine the substructure of matrix vesicle membranes as compared to plasma and other membranes of intact chondrocytes. Growth plates from 6-10 week old Sprague-Dawley rats were cut into 1x3 mm blocks whose long dimension was oriented either perpendicular or parallel to the long axis of the tibia. Some blocks were fixed at pH 7. 0 in 0. 2M cacodylate - buffered 2. 5% glutaraldehyde for 1 hour at 4ÅC. The blocks were immersed in 30% glycerol solution at 4ÅC for 1 hour, frozen in liquid nitrogen, and then fractured, etched for 2 minutes, and coated with platinum, carbon and 0. 2% Formvar solution. The replicas were cleaned with chromic acid, floated onto Formvar coated grids, and examined with a Phillips EM 300 electron microscope.Fixed and unfixed specimens appeared similar in ultrastructure. Chondrocytes, matrix, and matrix vesicles were identified. In specimens fractured parallel to the long axis of the tibia, the reserve, proliferative, hypertrophic, and calcifying zones could be discerned as described by light and electron microscopy.


Author(s):  
M. Ashraf ◽  
L. Landa ◽  
L. Nimmo ◽  
C. M. Bloor

Following coronary artery occlusion, the myocardial cells lose intracellular enzymes that appear in the serum 3 hrs later. By this time the cells in the ischemic zone have already undergone irreversible changes, and the cell membrane permeability is variably altered in the ischemic cells. At certain stages or intervals the cell membrane changes, allowing release of cytoplasmic enzymes. To correlate the changes in cell membrane permeability with the enzyme release, we used colloidal lanthanum (La+++) as a histological permeability marker in the isolated perfused hearts. The hearts removed from sprague-Dawley rats were perfused with standard Krebs-Henseleit medium gassed with 95% O2 + 5% CO2. The hypoxic medium contained mannitol instead of dextrose and was bubbled with 95% N2 + 5% CO2. The final osmolarity of the medium was 295 M osmol, pH 7. 4.


Sign in / Sign up

Export Citation Format

Share Document