scholarly journals Striatal injection of 6-hydroxydopamine induces retrograde degeneration and glial activation in the nigrostriatal pathway

2003 ◽  
Vol 18 (4) ◽  
pp. 272-282 ◽  
Author(s):  
Ricardo Wilson Pinho Rodrigues ◽  
Vânia Canterucci Gomide ◽  
Gerson Chadi

PURPOSE: The effect of a highly selective 6-hydroxydopamine (6-OHDA)-induced lesion of the nigrostriatal system on the astroglial and microglial activation was analysed in adult Wistar rats after an unilateral striatal injection of the neurotoxin. METHODS: Male rats received an unilateral stereotaxical injection of the 6-OHDA in the left side of the neostriatum and were sacrificed 22 days later. Control animals received the injection of the solvent. The rotational behaviour was registered by a rotometer just before the sacrifice. Immunohistochemistry was employed for visualization of the tyrosine hydroxylase (TH) positive dopamine cells, glial fibrillary acidic protein (GFAP) immunolabeled astrocytes and OX42 immunoreactive microglia. Stereological method employing the optical disector was used to estimate the degree of the changes. RESULTS: The striatal injection of the 6-OHDA induced a massive disappearance (32% of control) of the TH immunoreactive terminals in a defined area within the striatum surrounding the injection site. A disappearance (54% of control) of dopamine cell bodies was observed in a small region of the ipsilateral pars compacta of the substantia nigra (SNc). The GFAP and OX42immunohistochemistry revealed astroglial and microglial reactions (increases in the number and size of the cells) in the ipsilateral neostriatum and SNc of the 6-OHDA injected rats. CONCLUSIONS: The striatal injection of 6-OHDA leads to retrograde degeneration as well as astroglial and microglial activation in the nigrostriatal dopamine pathway. Modulation of activated glial cells may be related to wound repair and to the trophic paracrine response in the lesioned nigrostriatal dopamine system.

2002 ◽  
Vol 11 (3) ◽  
pp. 215-227 ◽  
Author(s):  
John Mcgrath ◽  
Elishia Lintz ◽  
Barry J. Hoffer ◽  
Greg A. Gerhardt ◽  
E. Matthew Quintero ◽  
...  

Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for dopamine neurons that has been proposed for use in the treatment of Parkinson's disease (PD). Previous studies using viral vectors to deliver GDNF in rodent models of PD have entailed administering the virus either prior to or immediately after neurotoxin-induced lesions, when the nigrostriatal pathway is largely intact, a paradigm that does not accurately reflect the clinical situation encountered with Parkinson's patients. In this study, recombinant adeno-associated virus carrying the gene encoding GDNF (rAAV-GDNF) was administered to animals bearing a maximal lesion in the nigrostriatal system, more closely resembling fully developed PD. Rats were treated with 6-hydroxydopamine into the medial forebrain bundle and assessed by apomorphine-induced rotational behavior for 5 weeks prior to virus administration. Within 4 weeks of a single intrastriatal injection of rAAV-GDNF, unilaterally lesioned animals exhibited significant behavioral recovery, which correlated with increased expression of dopaminergic markers in the substantia nigra, the medial forebrain bundle, and the striatum. Our findings demonstrate that rAAV-GDNF is capable of rescuing adult dopaminergic neurons from near complete phenotypic loss following a neurotoxic lesion, effectively restoring a functional dopaminergic pathway and diminishing motoric deficits. These data provide further support for the therapeutic potential of rAAV-GDNF-based gene therapy in the treatment of PD.


1998 ◽  
Vol 154 (2) ◽  
pp. 637-644 ◽  
Author(s):  
William F. Maragos ◽  
Rebekah J. Jakel ◽  
Zhen Pang ◽  
James W. Geddes

2013 ◽  
Vol 110 (12) ◽  
pp. 2792-2805 ◽  
Author(s):  
C. J. Lobb ◽  
A. K. Zaheer ◽  
Y. Smith ◽  
D. Jaeger

Numerous studies have suggested that alpha-synuclein plays a prominent role in both familial and idiopathic Parkinson's disease (PD). Mice in which human alpha-synuclein is overexpressed (ASO) display progressive motor deficits and many nonmotor features of PD. However, it is unclear what in vivo pathophysiological mechanisms drive these motor deficits. It is also unknown whether previously proposed pathophysiological features (i.e., increased beta oscillations, bursting, and synchronization) described in toxin-based, nigrostriatal dopamine-depletion models are also present in ASO mice. To address these issues, we first confirmed that 5- to 6-mo-old ASO mice have robust motor dysfunction, despite the absence of significant nigrostriatal dopamine degeneration. In the same animals, we then recorded simultaneous single units and local field potentials (LFPs) in the substantia nigra pars reticulata (SNpr), the main basal ganglia output nucleus, and one of its main thalamic targets, the ventromedial nucleus, as well as LFPs in the primary motor cortex in anesthetized ASO mice and their age-matched, wild-type littermates. Neural activity was examined during slow wave activity and desynchronized cortical states, as previously described in 6-hydroxydopamine-lesioned rats. In contrast to toxin-based models, we found a small decrease, rather than an increase, in beta oscillations in the desynchronized state. Similarly, synchronized burst firing of nigral neurons observed in toxin-based models was not observed in ASO mice. Instead, we found more subtle changes in pauses of SNpr firing compared with wild-type control mice. Our results suggest that the pathophysiology underlying motor dysfunction in ASO mice is distinctly different from striatal dopamine-depletion models of parkinsonism.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Hugh Chan ◽  
Helen Paur ◽  
Anthony C. Vernon ◽  
Virginia Zabarsky ◽  
Krishna P. Datla ◽  
...  

Clinical trials have demonstrated positive proof of efficacy of dual metabotropic glutamate receptor 2/3 (mGluR2/3) agonists in both anxiety and schizophrenia. Importantly, evidence suggests that these drugs may also be neuroprotective against glutamate excitotoxicity, implicated in the pathogenesis of Parkinson's disease (PD). However, whether this neuroprotection also translates into functional recovery is unclear. In the current study, we examined the neuroprotective efficacy of the dual mGluR2/3 agonist, 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), and whether this is accompanied by behavioral recovery in a rodent 6-hydroxydopamine (6-OHDA) model of PD. We now report that delayed post lesion treatment with 2R,4R-APDC (10 nmol), results in robust neuroprotection of the nigrostriatal system, which translated into functional recovery as measured by improved forelimb use asymmetry and reduced (+)-amphetamine-induced rotation compared to vehicle treated animals. Interestingly, these beneficial effects were associated with a decrease in microglial markers in the SNc, which may suggest an antiinflammatory action of this drug.


1994 ◽  
Vol 266 (6) ◽  
pp. H2489-H2496 ◽  
Author(s):  
M. T. Lin ◽  
J. J. Yang

To test for the ability of the nigrostriatal dopamine (DA) system to influence cardiovascular function, experiments were carried out to assess the effects of electrical or chemical stimulation of the nigrostriatal DA system on arterial blood pressure, heart rate, and striatal DA release in anesthetized rats. Electrical stimulation of the substantia nigra pars compacta (SNC), in addition to enhancing the DA release in the corpus striatum (CS), elicited proportional hypertension and tachycardia. This could be mimicked by microinjection of two excitatory amino acids, kainic acid and glutamate, into the SNC area of rat brain. The SNC stimulation-induced hypertension, tachycardia, and increased striatal DA release were attenuated by prior destruction of the nigrostriatal DA system produced by intramedial forebrain bundle injection of 6-hydroxydopamine and by prior blockade of postsynaptic DA receptors produced by intra-CS injection of DA receptor antagonists, haloperidol or pimozide. The SNC stimulation-induced hypertension was attenuated by spinal transection, whereas the SNC stimulation-induced tachycardia was attenuated by bilateral vagotomy. The data suggest that stimulation of the nigrostriatal DA system produces both hypertension and tachycardia in rats.


Sign in / Sign up

Export Citation Format

Share Document