scholarly journals Response of Cucumis sativus L. seedlings to Pb exposure

2009 ◽  
Vol 21 (3) ◽  
pp. 175-186 ◽  
Author(s):  
Jamile F. Gonçalves ◽  
Alexssandro G. Becker ◽  
Luciane B. Pereira ◽  
João B. T. da Rocha ◽  
Denise Cargnelutti ◽  
...  

In this study, the effects of lead (Pb) on growth, photosynthetic pigments concentration, lipid peroxidation, electrolyte leakage percentage (ELP), protein oxidation, aminolevulinate dehydratase (ALA-D; E.C. 4.2.1.24), ascorbate peroxidase (APX; E.C. 1.11.1.11), catalase (CAT; E.C. 1.11.1.6) and superoxide dismutase (SOD; E.C. 1.15.1.1) activities, and ascorbic acid (AsA), non-protein thiol groups (NPSH) and total soluble protein concentrations in cucumber seedlings (Cucumis sativus L.) were investigated. Seedlings were grown in vitro in an agar-solidified substrate containing three Pb levels as (C2H3O2)Pb.3H2O (0, 100, 400, and 1000 µmol L-1) for 10 d. Increasing Pb concentrations in substrate enhanced Pb concentration in both roots and shoot. Pb accumulated at a higher amount in roots. Root length and total fresh weight were decreased at the two highest Pb concentrations. Cucumber showed no reduction in shoot length and total dry weight at any Pb level. The highest Pb concentration decreased water content and ALA-D activity as well as increased malondialdehyde, carbonyls and total soluble protein concentrations. Carotenoids concentration enhanced at 100 and 400 µmol Pb L-1, while chlorophyll concentration and ELP were not affected by Pb stress. Activity of APX was inhibited while the activities of CAT and SOD were increased at all Pb concentrations. AsA was enhanced at 400 and 1000 µmol Pb L-1 whereas NPSH were increased only at the highest Pb concentration. Therefore, high Pb-exposure caused oxidative stress, and the antioxidant system of the cucumber seedlings was not sufficient to revert it, contributing for growth reduction.

Weed Science ◽  
1980 ◽  
Vol 28 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Robert E. Hoagland

The growth regulator, glyphosine [N,N-bis(phosphonomethyl)glycine], and other possible metabolites of glyphosine and glyphosate [N-(phosphonomethyl)glycine] [glycine, sarcosine, and aminomethylphosphonic acid (AMPA)] were tested individually (0.5 mM) or as a mixture (each at 0.5 mM) for their effects on growth, extractable phenylalanine ammonia-lyase (PAL) activity, hydroxyphenolic-compound production, chlorophyll and anthocyanin contents, and on soluble-protein levels in soybean [Glycine max(L.) Merr. ‘Hill’] seedlings. Most chemical treatments caused some inhibition of growth either on fresh weight accumulation or on root elongation in the light and dark over 72 h. Glyphosine was generally the most inhibitory and caused the greatest inhibition on axis dry-weight accumulation. Glyphosine significantly increased extractable PAL activity in axes of light- and dark-grown soybeans to a lesser extent than did glyphosate. AMPA had some inhibitory effects on extractable PAL activity whereas other compounds had little influence on the enzyme. These compounds had little effect on total soluble protein in axes or on soluble protein in PAL preparations from 12 to 72 h in light-or dark-grown seedlings. No in vitro effect of the chemicals on PAL activity was found at concentrations up to 0.5 mM. Hydroxyphenolic compound levels increased within 24 to 72 h (per gram fresh weight basis) in light- or dark-grown soybean axes treated with glyphosine, AMPA, or a metabolite mixture (AMPA, sarcosine, and glycine). Anthocyanin content was decreased by glyphosate and to a lesser extent by glyphosine, but was increased by AMPA and the mixture. Glyphosate significantly increased the chlorophylla/bratio and decreased total chlorophyll, but glyphosine decreased the chlorophyll content to a lesser degree.


2006 ◽  
Vol 1 (3) ◽  
pp. 110-117 ◽  
Author(s):  
Vasudevan Ayyappan . ◽  
Selvaraj Natesan . ◽  
Ganapathi Andy . ◽  
Chang won Choi . ◽  
Manickavasagam Marka . ◽  
...  

2006 ◽  
pp. 155-160 ◽  
Author(s):  
N. Selvarai ◽  
A. Ganapath ◽  
A. Vasudevan ◽  
G. Vengadesan ◽  
S. Kasthuri Rengan

1992 ◽  
Vol 19 (2) ◽  
pp. 165
Author(s):  
RL Gambley ◽  
W Dodd

Explants of cucumber seedlings having different lengths of hypocotyl attached were grown axenically on Murashige and Skoog medium supplemented with kinetin (2 mg L-1). Multiple shoots developed from the apical regions of all explants. In this tissue shoots may also develop at the base of the hypocotyl, but this response is strongly dependent upon the length of the hypocotyl. As the length of the hypocotyl increased beyond 5 mm, there was a rapid reduction in basal shoot numbers and a concomitant increase in root production. We suggest that these responses are related not to the ratio or concentration of endogenous growth regulators but to different regions of sensitivity to growth regulators along the hypocotyl.


2012 ◽  
Vol 4 (1) ◽  
pp. 112-115 ◽  
Author(s):  
Hossein MARDANI ◽  
Hassan BAYAT ◽  
Amir Hossein SAEIDNEJAD ◽  
Ehsan Eyshi REZAIE

Impacts of various concentrations of salicylic acid (SA) on cucumber (Cucumis sativus L.) seedling characteristic were evaluated under different water stress levels by using a factorial arrangement based on completely randomized design with three replications at experimental greenhouse of Ferdowsi University of Mashhad, Iran. The studied factors included three water deficit levels (100% FC, 80% FC, and 60% FC) considered as first factor and five levels of SA concentrations (0, 0.25, 0.5, 0.75, and 1 mM) as second factor. Results showed that foliar application of SA at the highest concentration enhanced leaf area, leaf and dry weight while decreased stomatal conductance under high level of water deficit stress. Though, severe water deficit stress sharply raised the SPAD reading values. In general, exogenous SA application could develop cucumber seedling characteristic and improve water stress tolerance.


1981 ◽  
Vol 61 (3) ◽  
pp. 665-671 ◽  
Author(s):  
G. LAFOND ◽  
L. E. EVANS

The effect of the "leafless" mutations (in which tendrils replace leaflets, af, and the stipules are reduced to a vestigial form, st) upon chlorophyll content, total protein, soluble protein, ribulose biphosphate carboxylase activity, and fresh weight/dry weight ratio were studied. Comparison of three near-isogenic lines of Century, Freezer and Trapper for the genotypes af af st st (leafless), af af + + (semi-leafless) and + + st st (reduced stipules) were compared with the conventional (+ + + +) plants. Chlorophyll contents were reduced by as much as 50% in the leafless phenotypes, as compared to the leafed plants. The leafless phenotype showed significantly higher levels of total nitrogen than the leafed plants. Tendrils had significantly lower levels of soluble protein than leaflets in two of the three cultivars examined. The fresh weight/dry weight ratio was significantly higher in the leafless phenotypes than the leafed types as a result of changes in morphology, going from a leaflet to a tendril. The internal arrangement of cells in the tendril was typical of pith and cortex tissue with very few intercellular spaces between the parenchyma cells. The intercellular space index within the tendrils was significantly lower than in the leaflet. In vitro measurements of ribulose biphosphate carboxylase activity were calculated per unit fresh weight and per unit chlorophyll. No significant differences were found between the different phenotypes per unit fresh weight; however, when the activity was measured per unit chlorophyll, the values for tendrils were significantly higher than for leaflets.


Sign in / Sign up

Export Citation Format

Share Document