Effects of Glyphosate on Metabolism of Phenolic Compounds: VI. Effects of Glyphosine and Glyphosate Metabolites on Phenylalanine Ammonia-Lyase Activity, Growth, and Protein, Chlorophyll, and Anthocyanin Levels in Soybean (Glycine max) Seedlings

Weed Science ◽  
1980 ◽  
Vol 28 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Robert E. Hoagland

The growth regulator, glyphosine [N,N-bis(phosphonomethyl)glycine], and other possible metabolites of glyphosine and glyphosate [N-(phosphonomethyl)glycine] [glycine, sarcosine, and aminomethylphosphonic acid (AMPA)] were tested individually (0.5 mM) or as a mixture (each at 0.5 mM) for their effects on growth, extractable phenylalanine ammonia-lyase (PAL) activity, hydroxyphenolic-compound production, chlorophyll and anthocyanin contents, and on soluble-protein levels in soybean [Glycine max(L.) Merr. ‘Hill’] seedlings. Most chemical treatments caused some inhibition of growth either on fresh weight accumulation or on root elongation in the light and dark over 72 h. Glyphosine was generally the most inhibitory and caused the greatest inhibition on axis dry-weight accumulation. Glyphosine significantly increased extractable PAL activity in axes of light- and dark-grown soybeans to a lesser extent than did glyphosate. AMPA had some inhibitory effects on extractable PAL activity whereas other compounds had little influence on the enzyme. These compounds had little effect on total soluble protein in axes or on soluble protein in PAL preparations from 12 to 72 h in light-or dark-grown seedlings. No in vitro effect of the chemicals on PAL activity was found at concentrations up to 0.5 mM. Hydroxyphenolic compound levels increased within 24 to 72 h (per gram fresh weight basis) in light- or dark-grown soybean axes treated with glyphosine, AMPA, or a metabolite mixture (AMPA, sarcosine, and glycine). Anthocyanin content was decreased by glyphosate and to a lesser extent by glyphosine, but was increased by AMPA and the mixture. Glyphosate significantly increased the chlorophylla/bratio and decreased total chlorophyll, but glyphosine decreased the chlorophyll content to a lesser degree.

Weed Science ◽  
1981 ◽  
Vol 29 (4) ◽  
pp. 433-439 ◽  
Author(s):  
Robert E. Hoagland ◽  
Stephen O. Duke

Effects of 16 herbicides representing 14 herbicide classes on growth and extractable phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) were examined in light- and dark-grown soybean [Glycine max(L.) Merr. ‘Hill’] seedlings. High purity (96 to 100%) herbicides were supplied via aqueous culture at various concentrations: 0.5 mM amitrole (3-amino-s-triazole), 0.1 mM atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], 0.07 mM diclofop-methyl {methyl ester of 2-[4-(2,4-dichlorophenoxy)phenoxy] propanoicacid}, 0.5 mM DSMA (disodium methanearsonate), 0.2 mM fenuron (1,1-dimethyl-3-phenylurea), 0.05 mM fluridone {1-methyl-3-phenyl-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone}, 0.5 mM MH (1,2-dihydro-3,6-pyridazinedione), 0.5 mM metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one], 1.8 μM nitralin [4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline], 0.5 mM norflurazon [4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3(2H)-pyridazinone], 0.05 mM paraquat (1,1′-dimethyl-4,4′-bipyridinium ion), 0.15 mM perfluidone {1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl] methanesulfonamide}, 0.2 mM propanil (3′,4′-dichloropropionanilide), 0.1 mM propham (isopropyl carbanilate), 0.5 mM TCA (trichloroacetic acid), and 0.05 mM 2,4-D [(2,4-dichlorophenoxy)acetic acid]. Dark-grown soybean seedlings (3-day-old) were transferred to control solutions (2 mM CaSO4) or to herbicide solutions (in 2 mM CaSO4) and grown at 25 C in continuous white light (200 μE•m-2•s-1) or continuous darkness until harvested 24 or 48 h after transfer. After 48 h, growth (fresh weight, dry weight, elongation) was inhibited by most of the chemicals. Other signs of toxicity (necrosis, secondary root stunting, and root tip swelling) were noted for some treatments. Roots were most affected, although hypocotyls were generally not changed. Hypocotyl elongation was stimulated by atrazine, fluridone, and norflurazon after 48 h light. Extractable PAL activity from soybean axes was decreased by atrazine, fenuron, metribuzin, norflurazon, propanil, propham, and 2,4-D. Amitrole and paraquat were the only herbicides that increased extractable PAL activity. Other compounds tested had no effect on the enzyme. None of the herbicides significantly affected in vitro PAL activity.


2008 ◽  
Vol 54 (No. 7) ◽  
pp. 294-300 ◽  
Author(s):  
R. Yan ◽  
S. Gao ◽  
W. Yang ◽  
M. Cao ◽  
S. Wang ◽  
...  

<I>Jatropha curcas</I> L. embryos were germinated and grown in vitro under nickel concentrations of 100, 200, 400 and 800 &mu;mol to observe the effects of high nickel concentrations on seedling growth. Observed biological makers included biomass, and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and phenylalanine ammonia-lyase (PAL) in the cotyledons. The fresh weight of cotyledons in all the tested nickel concentrations was lower than that of the control, but dry weight of cotyledons increased with increasing nickel concentrations up to 200 &mu;mol. SOD activity increased significantly up to 400 &mu;mol and then decreased at 800 &mu;mol nickel. POD activities were induced remarkably at 100 and 200 &mu;mol, but the activity decreased with increasing nickel concentrations. Similarly, a negative link between CAT activity and nickel concentrations was observed in this experiment. PAL activity had a positive correlation to nickel concentrations, and the highest activity was found at 400 &mu;mol nickel. Electrophoresis analysis suggested that a significant correlation between nickel concentrations and isoenzyme patterns of SOD and POD was observed, and these results were consistent with the changes of the activity assayed in solutions.


1981 ◽  
Vol 61 (3) ◽  
pp. 665-671 ◽  
Author(s):  
G. LAFOND ◽  
L. E. EVANS

The effect of the "leafless" mutations (in which tendrils replace leaflets, af, and the stipules are reduced to a vestigial form, st) upon chlorophyll content, total protein, soluble protein, ribulose biphosphate carboxylase activity, and fresh weight/dry weight ratio were studied. Comparison of three near-isogenic lines of Century, Freezer and Trapper for the genotypes af af st st (leafless), af af + + (semi-leafless) and + + st st (reduced stipules) were compared with the conventional (+ + + +) plants. Chlorophyll contents were reduced by as much as 50% in the leafless phenotypes, as compared to the leafed plants. The leafless phenotype showed significantly higher levels of total nitrogen than the leafed plants. Tendrils had significantly lower levels of soluble protein than leaflets in two of the three cultivars examined. The fresh weight/dry weight ratio was significantly higher in the leafless phenotypes than the leafed types as a result of changes in morphology, going from a leaflet to a tendril. The internal arrangement of cells in the tendril was typical of pith and cortex tissue with very few intercellular spaces between the parenchyma cells. The intercellular space index within the tendrils was significantly lower than in the leaflet. In vitro measurements of ribulose biphosphate carboxylase activity were calculated per unit fresh weight and per unit chlorophyll. No significant differences were found between the different phenotypes per unit fresh weight; however, when the activity was measured per unit chlorophyll, the values for tendrils were significantly higher than for leaflets.


Weed Science ◽  
1983 ◽  
Vol 31 (6) ◽  
pp. 845-852 ◽  
Author(s):  
Robert E. Hoagland ◽  
Stephen O. Duke

The effects of 16 herbicides from 14 different chemical classes on levels of soluble protein, hydroxyphenolics, anthocyanin, and chlorophyll were determined in light- and dark-grown soybean [Glycine max(L.) Merr. ‘Hill’] seedlings. Growth-reducing concentrations of the herbicides were supplied to 3-day-old dark-grown soybean seedlings in liquid culture. Soluble protein (per axis) was reduced by fluridone {1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone}, paraquat (1,1′-dimethyl-4,4′-bipyridinium ion), perfluidone {1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl] methanesulfonamide}, and propanil (3′,4′-dichloropropionanilide) 24 or 48 h after treatment. In light-grown plants, soluble hydroxyphenolic compound levels were decreased on a per axis basis after 48 h by all chemical treatments except by atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], the methyl ester of diclofop {2-[4-(2,4-dichlorophenoxy)phenoxy] propanoate}, DSMA (disodium methanearsonate), fluridone, MH (1,2-dihydro-3,6-pyridazinedione), nitralin [4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline], TCA (trichloroacetic acid), and 2,4-D [(2,4-dichlorophenoxy)acetic acid]. Total chlorophyll content in hypocotyls of these seedlings was decreased by fluridone, metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5 (4H)-one], norflurazon [4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3 (2H)-pyridazinone], paraquat, and 2,4-D, but others had no significant effect. Anthocyanin accumulation in hypocotyls of 48-h light-grown seedlings was decreased by atrazine, fenuron (1,1-dimethyl-3-phenylurea), metribuzin, norflurazon, paraquat, propanil, and propham (isopropyl carbanilate). Phenylalanine ammonia-lyase (PAL) activity (previously reported work) was positively correlated with anthocyanin levels in tissues after treatment with these 16 herbicides, but not with glyphosate [N-(phosphonomethyl)glycine]. There was, however, no correlation between extractable PAL activity and chlorophyll, soluble hydroxyphenolic compounds, or soluble protein content. These results indicated that extracted PAL activities usually reflect relative in vivo activities and that PAL activity is limiting to phenylpropanoid synthesis in vivo.


2009 ◽  
Vol 21 (3) ◽  
pp. 175-186 ◽  
Author(s):  
Jamile F. Gonçalves ◽  
Alexssandro G. Becker ◽  
Luciane B. Pereira ◽  
João B. T. da Rocha ◽  
Denise Cargnelutti ◽  
...  

In this study, the effects of lead (Pb) on growth, photosynthetic pigments concentration, lipid peroxidation, electrolyte leakage percentage (ELP), protein oxidation, aminolevulinate dehydratase (ALA-D; E.C. 4.2.1.24), ascorbate peroxidase (APX; E.C. 1.11.1.11), catalase (CAT; E.C. 1.11.1.6) and superoxide dismutase (SOD; E.C. 1.15.1.1) activities, and ascorbic acid (AsA), non-protein thiol groups (NPSH) and total soluble protein concentrations in cucumber seedlings (Cucumis sativus L.) were investigated. Seedlings were grown in vitro in an agar-solidified substrate containing three Pb levels as (C2H3O2)Pb.3H2O (0, 100, 400, and 1000 µmol L-1) for 10 d. Increasing Pb concentrations in substrate enhanced Pb concentration in both roots and shoot. Pb accumulated at a higher amount in roots. Root length and total fresh weight were decreased at the two highest Pb concentrations. Cucumber showed no reduction in shoot length and total dry weight at any Pb level. The highest Pb concentration decreased water content and ALA-D activity as well as increased malondialdehyde, carbonyls and total soluble protein concentrations. Carotenoids concentration enhanced at 100 and 400 µmol Pb L-1, while chlorophyll concentration and ELP were not affected by Pb stress. Activity of APX was inhibited while the activities of CAT and SOD were increased at all Pb concentrations. AsA was enhanced at 400 and 1000 µmol Pb L-1 whereas NPSH were increased only at the highest Pb concentration. Therefore, high Pb-exposure caused oxidative stress, and the antioxidant system of the cucumber seedlings was not sufficient to revert it, contributing for growth reduction.


2013 ◽  
Vol 4 (2) ◽  
pp. 98-106
Author(s):  
Vinícius Almeida Oliveira ◽  
Lorenxo Paradiso Martins ◽  
Rogério Cavalcante Gonçalves ◽  
Luíz Paulo Figueredo Benício ◽  
Daniella Lima da Costa ◽  
...  

The fungus are the main microorganisms present in seeds, is the main cause of deterioration and loss in production. The anthracnose caused by C. truncatum associated with soybean seeds as has main vehicle for introduction into the planting areas can be detected in all stages of crop development, from the cotyledons to the end of the cycle, being present in the stems, veins, leaflets and pods. Thus aimed to evaluate the influence of using different products fungicides as seed treatment, where the seeds were inoculated with the pathogenic fungus and treated with the chemicals They take Carbedazim + Fludioxonil + metalaxyl-M and carboxin + thiram. For each fungicide product was two tramentos done using the doses recommended by the manufacturer and 75% of dose. We evaluated health, germination and promote plant (Plant growth, fresh weight and dry weight of root and shoot). This work concludes that the use of fungicide controls significantly seeds infected with C. truncatum and presents a significant improvement as the development of structures seedling.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5340
Author(s):  
Alicja Tymoszuk

The interactions between nanoparticles and plant cells are still not sufficiently understood, and studies related to this subject are of scientific and practical importance. Silver nanoparticles (AgNPs) are one of the most commonly produced and used nanomaterials. This study aimed to investigate the influence of AgNPs applied at the concentrations of 0, 50, and 100 mg·L−1 during the process of in vitro germination as well as the biometric and biochemical parameters of developed seedlings in three vegetable species: Solanum lycopersicum L. ‘Poranek’, Raphanus sativus L. var. sativus ‘Ramona’, and Brassica oleracea var. sabellica ‘Nero di Toscana’. The application of AgNPs did not affect the germination efficiency; however, diverse results were reported for the growth and biochemical activity of the seedlings, depending on the species tested and the AgNPs concentration. Tomato seedlings treated with nanoparticles, particularly at 100 mg·L−1, had shorter shoots with lower fresh and dry weights and produced roots with lower fresh weight. Simultaneously, at the biochemical level, a decrease in the content of chlorophylls and carotenoids and an increase in the anthocyanins content and guaiacol peroxidase (GPOX) activity were reported. AgNPs-treated radish plants had shorter shoots of higher fresh and dry weight and longer roots with lower fresh weight. Treatment with 50 mg·L−1 and 100 mg·L−1 resulted in the highest and lowest accumulation of chlorophylls and carotenoids in the leaves, respectively; however, seedlings treated with 100 mg·L−1 produced less anthocyanins and polyphenols and exhibited lower GPOX activity. In kale, AgNPs-derived seedlings had a lower content of chlorophylls, carotenoids, and anthocyanins but higher GPOX activity of and were characterized by higher fresh and dry shoot weights and higher heterogeneous biometric parameters of the roots. The results of these experiments may be of great significance for broadening the scope of knowledge on the influence of AgNPs on plant cells and the micropropagation of the vegetable species. Future studies should be aimed at testing lower or even higher concentrations of AgNPs and other NPs and to evaluate the genetic stability of NPs-treated vegetable crops and their yielding efficiency.


2016 ◽  
Vol 27 (2) ◽  
pp. 128-135 ◽  
Author(s):  
J Akte ◽  
S Yasmin ◽  
MJH Bhuiyan ◽  
F Khatun ◽  
J Roy ◽  
...  

Five rice varieties viz. Binadhan-4, Binadhan-5, Binadhan-6, Binadhan-10 and Iratom-24 were evaluated in vitro under different water stress conditions. Several parameters such as germination percentage, shoot length, root length, shoot-root ratio, fresh weight, dry weight, turgid weight, relative water content and proline accumulation were studied. Drought condition was created by MS medium supplemented with five treatments of PEG, with a control such as 0%, 1%, 2%, 3% and 4% of PEG. The highest germination (100%) was found in the variety Binadhan-10 under low water stress conditions induced by 1% PEG. Similarly, the highest percentage of germination was found in all varieties under control condition (0% PEG). The lowest percentage of germination was obtained in the variety Iratom-24. But under severe stress (4% PEG), the highest percentage of germination was found only in the variety Binadhan-10. Moreover, the variety Binadhan-10 was found to be the best at 4% PEG for shoot length, root length, shoot-root ratio, relative water content and also the best at 1% PEG for fresh weight, dry weight, turgid weight. Water stress decreased relative water content and increased proline accumulation in rice. The highest relative water content was recorded in the variety Binadhan-10 and the lowest value recorded in the variety Binadhan-5. The highest proline content was obtained from the binadhan-6 at the highest treatment (4% PEG). Binadhan-10 showed the best performance almost in all the parameters under drought stress because of its own nature of tolerancy.Progressive Agriculture 27 (2): 128-135, 2016


2002 ◽  
Vol 29 (1) ◽  
pp. 63 ◽  
Author(s):  
Odile Faivre-Rampant ◽  
Jean-Paul Charpentier ◽  
Claire Kevers ◽  
Jacques Dommes ◽  
Harry Van Onckelen ◽  
...  

The auxin and phenolic contents, as well as phenylalanine ammonia-lyase (PAL) activity, were determined in in vitro cultured shoots of the recalcitrant-to-root rac mutant of tobacco, and compared with wild-type shoots. The mutant and wild-type shoots showed similar auxin changes during the culture cycle, but with higher contents for the mutant. A transient peak of auxin (corresponding to the achievement of the rooting inductive phase) occurred at day 14 in both types of shoots, but earlier in the basal parts of the wild-type stems. The rac shoots contained more phenolics, corresponding with an increased PAL activity. The most abundant phenolic compound found in the two types of tobacco was chlorogenic acid, which was more abundant in the rac shoots. Rutin was also detected at a higher concentration in the mutant shoots. Basal parts of wild-type shoots treated with 10–3 M chlorogenic acid reacted by accumulating auxins and, unlike untreated controls, did not form adventitious roots. The relationships between these biochemical analyses in relation to the growth limitation of the rac mutant, and the inhibition of its root development, are discussed.


Weed Science ◽  
1989 ◽  
Vol 37 (6) ◽  
pp. 743-747 ◽  
Author(s):  
Robert E. Hoagland

Three-day-old soybean seedlings were treated with acifluorfen via liquid culture [50 μM in dark, 1 μM in light (200 μE·m–2·s–1)]. Root elongation in the dark was inhibited only slightly (6%) after 96 h. In the light, acifluorfen inhibited root elongation after 48 h; after 96 h, inhibition was 32%. Hypocotyl length was not affected in either the light or dark. Soluble hydroxyphenolic content per axis was unaffected in the dark but was reduced by about 13 to 25% at 24 to 96 h in the light. Extractable phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity per axis was unaltered by herbicide in the dark. A brief transient increase in PAL activity (4 to 24 h) in axes of light-grown seedlings in the presence of acifluorfen was followed by reduced enzyme levels compared to light-grown controls at 72 and 96 h. Although light is required for maximal herbicide action, there was no effect on anthocyanin or chlorophyll accumulation or on the chlorophyll a/b ratio in hypocotyls or light-grown seedlings.


Sign in / Sign up

Export Citation Format

Share Document