scholarly journals Assessment of Salicylic Acid Impacts on Seedling Characteristic of Cucumber (Cucumis sativus L.) under Water Stress

2012 ◽  
Vol 4 (1) ◽  
pp. 112-115 ◽  
Author(s):  
Hossein MARDANI ◽  
Hassan BAYAT ◽  
Amir Hossein SAEIDNEJAD ◽  
Ehsan Eyshi REZAIE

Impacts of various concentrations of salicylic acid (SA) on cucumber (Cucumis sativus L.) seedling characteristic were evaluated under different water stress levels by using a factorial arrangement based on completely randomized design with three replications at experimental greenhouse of Ferdowsi University of Mashhad, Iran. The studied factors included three water deficit levels (100% FC, 80% FC, and 60% FC) considered as first factor and five levels of SA concentrations (0, 0.25, 0.5, 0.75, and 1 mM) as second factor. Results showed that foliar application of SA at the highest concentration enhanced leaf area, leaf and dry weight while decreased stomatal conductance under high level of water deficit stress. Though, severe water deficit stress sharply raised the SPAD reading values. In general, exogenous SA application could develop cucumber seedling characteristic and improve water stress tolerance.

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 491
Author(s):  
Zikria Zafar ◽  
Fahad Rasheed ◽  
Rana Muhammad Atif ◽  
Muhammad Maqsood ◽  
Oliver Gailing

Fruit tree culture is at the brink of disaster in arid to semi-arid regions due to low water availability. A pot experiment was carried out to analyze whether foliar application of salicylic acid (SA) can improve water stress tolerance in Syzygiumcumini. Saplings were subjected to control (CK, 90% of field capacity, FC), medium stress (MS, 60% of FC) and high stress (HS, 30% of FC) along with foliar application of 0.5 and 1.0 mM of SA. Results showed that soil water deficit significantly decreased leaf, stem and total dry weight, leaf gas exchange attributes and chlorophyll a, b. However, root dry weight and root/shoot ratio increased under MS and HS, respectively. Contrarily, foliar application of SA significantly improved chlorophyll a, b, leaf gas exchange attributes, and dry weight production under soil water deficit. Concentration of oxidants like hydrogen peroxide and superoxide radicals, along with malondialdehyde and electrolyte leakage increased under soil water deficit; however, decreased in plants sprayed with SA due to the increase in the concentration of antioxidant enzymes like superoxide dismutase, peroxidase, catalase and ascorbate peroxidase. Results suggest that the foliar application of SA can help improve water stress tolerance in Syzygiumcumini saplings; however, validation of the results under field conditions is necessary.


2015 ◽  
Vol 48 (1) ◽  
pp. 57-67 ◽  
Author(s):  
A.A. Bahari ◽  
R. Sokhtesaraei ◽  
H.R. Chaghazardi ◽  
F. Masoudi ◽  
H. Nazarli

Abstract In order to study the effects of water deficit stress and foliar application of salicylic acid (SA) on the activity of five antioxidant enzymes (catalase - CAT; EC 1.11.1.6, ascorbate peroxidase - APX; EC 1.11.1.11, glutathione reductase - GR; EC 1.6.4.2, peroxidase - POD; EC 1.11.1.7 and polyphenol oxidase - PPO; 1.14.18.1) of Thymus daenensis (subsp. lancifolius), an experiment was conducted in factorial based on completely randomized design with three replicates, during 2013. Drought treated seedlings showed elevated levels of reactive oxygen species (ROSs), with a concomitant increase in the activities of the enzymes CAT, APX, GR, POD and PPO, compared to controls. Under medium water deficit, APX and PPO activities significantly increased by higher SA concentration (2 mM), but under control and sever water deficit conditions, there was no significant difference between 1 mM and 2 mM concentrations regarding APX and PPO activity. Under all levels of available water, increase in SA concentration from 0.1 mM to1 mM induced significant increase in GR activity. The maximum amount of GR (under medium water deficit condition) achieved from 1mM of SA. While the maximum amounts of APX, PPO (under medium water deficit condition), CAT and POD (under sever water deficit condition) achieved from 2 mM of SA. In total, our results suggest that application of SA (as a trigger of signal cascade) could be advantageous against water deficit stress, and could protect thyme plants in mentioned conditions.


2021 ◽  
Author(s):  
Fatemeh Ebrahimi ◽  
Amin Salehi ◽  
Mohsen Movahedi Dehnavi ◽  
Amin Mirshekari ◽  
Mohammad Hamidian ◽  
...  

Abstract BackgroundWater-deficit stress is one of the most important sources of damage to crop production worldwide. Adopting appropriate varieties using soil microorganisms such as arbuscular mycorrhiza(AM) can significantly reduce theadverseeffectsofwater deficiency.This study is aimed to evaluate the role of Funneliformismosseaeon nutrients uptake and some physiological traits of two chamomile varieties namely Bodgold (Bod) and Soroksári(Sor) under water-deficit stress. The pot experiment was performed in a hydroponic system within a completely randomized design considering four replications. Three levels of water-deficit stress (PEG 6000) were taken into account at water potentials of -0.4 and -0.8MPa. The second factor was AM inoculation.ResultsWater-deficit stress significantly reduced the uptake of macro-nutrients (N, P, and K) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under water-deficit stress. In the case of Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing theadverseeffectsofwater-deficit stress. Under water-deficit stress, the growth and total dry weight improved upon AM inoculation. ConclusionsIn general, inoculation of chamomile with AM balanced the uptake of nutrients increased the level of osmolytes, antioxidant enzymes, and hence improved plant characteristics under water-deficit stress in both varieties, however, it was more effective in reducing stress damages in Sor variety.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1615
Author(s):  
Zikria Zafar ◽  
Fahad Rasheed ◽  
Ahsan Ul Haq ◽  
Faridah Hanum Ibrahim ◽  
Shazia Afzal ◽  
...  

Mitigating climate change requires the identification of tree species that can tolerate water stress with fewer negative impacts on plant productivity. Therefore, the study aimed to evaluate the water stress tolerance of young saplings of C. erectus and M. alba under three soil water deficit treatments (control, CK, 90% field capacity, FC, medium stress MS, 60% FC and high stress, HS, 30% FC) under controlled conditions. Results showed that leaf and stem dry weight decreased significantly in both species under MS and HS. However, root dry weight and root/shoot ratio increased, and total dry weight remained similar to CK under MS in C. erectus saplings. Stomatal conductance, CO2 assimilation rate decreased, and intrinsic water use efficiency increased significantly in both species under MS and HS treatments. The concentration of hydrogen peroxide, superoxide radical, malondialdehyde and electrolyte leakage increased in both the species under soil water deficit but was highest in M. alba. The concentration of antioxidative enzymes like superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase also increased in both species under MS and HS but was highest in C. erectus. Therefore, results suggest that C. erectus saplings depicted a better tolerance to MS due to an effective antioxidative enzyme system.


Author(s):  
Yoan Salgado-Valle ◽  
Félix Michel Henríquez-Díaz ◽  
Miguel Ángel Ramírez-Arrebato ◽  
Aida Tania Rodríguez-Pedroso ◽  
Michel Ruiz-Sánchez ◽  
...  

To evaluate the foliar application of the Quitomax® biostimulant in Cucumis sativus crop, an experiment was developed at the municipality of Pinar del Río province, Cuba, under protected crop conditions. The treatments consisted in applying 300 and 500 mg.ha-1 10 and 25 days after transplantation (ddt) and a commercial Bayfolan Forte® control. A randomized design with four long replicates was used and variables such as height and thickness of the plant stem of Cucumis sativus, number of total fruits, fruit mass and number of exportable quality fruits were measured during five harvest times (32, 39, 46, 60 and 67 ddt). The results showed that the higher concentration of Quitomax® applied (500 mg.ha-1) in the two growth moments produces the highest values for the growth variables and the highest exportable quality fruits.


2021 ◽  
Author(s):  
Fatemeh Ebrahimi ◽  
Amin Salehi ◽  
Mohsen Movahedi Dehnavi ◽  
Amin Mirshekari ◽  
Mohammad Hamidian ◽  
...  

Abstract BackgroundWater-deficit stress is one of the most important sources of damage to crop production worldwide. Adopting appropriate varieties using soil microorganisms such as arbuscular mycorrhiza(AM) fungi can significantly reduce the adverse effects of water deficiency. This study is aimed to evaluate the role of Funneliformis mosseae on nutrients uptake and some physiological traits of two chamomile varieties namely Bodgold (Bod) and Soroksári (Sor) under water-deficit stress. The pot experiment was performed in a completely randomized design with three factors: water-deficit stress (PEG 6000) was applied along with Hoagland solution at three levels (0, -0.4 and -0.8 MPa), two German chamomile varieties (Bodgold (Bod) and Soroksari (Sor)) and AM inoculation (Funneliformis mosseae species (fungal and non-fungal)) at four replications in perlite substrate. ResultsWater-deficit stress significantly reduced the uptake of macro-nutrients (N, P, and K) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under water-deficit stress. In the case of Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing the adverse effects of water-deficit stress. Under water-deficit stress, the growth and total dry weight improved upon AM inoculation. ConclusionsIn general, inoculation of chamomile with AM balanced the uptake of nutrients increased the level of osmolytes, antioxidant enzymes, and hence improved plant characteristics under water-deficit stress in both varieties, however, it was more effective in reducing stress damages in Sor variety.


2017 ◽  
Vol 15 (1) ◽  
pp. 81-91 ◽  
Author(s):  
MS Rana ◽  
MA Hasan ◽  
MM Bahadur ◽  
MR Islam

The performance of twenty wheat genotypes under Polyethylene Glycol (PEG) induced water stress during germination and early seedling growth stages were tested under three levels of water potential i) Control (Tap water), ii) -2 bars and iii) -4 bar at the Crop Physiology and Ecology Laboratory of Hajee Mohammad Danesh Science and Technology University, Dinajpur during September 2014 to October 2014. Rate of germination and vigor index of all wheat genotypes were delayed with the increment of water stress induced by PEG. Shoot and root lengths and seedling dry weight of 10 days old seedlings were found to be reduced due to the increment of water stress. However, the degree of reduction of these parameters with the increment of water stress was not similar for all wheat genotypes. Stress tolerance index (STI) based on seedling dry weight indicated a wide difference in stress tolerance among the wheat genotypes. At moderate water deficit stress, BARI Gom 25, E 34, E 28 and BAW 1170 showed more stress tolerance and the wheat genotypes- Sourav, E 23 and BAW 1140 showed greater stress sensitivity than the other wheat genotypes. At higher water deficit stress, BARI Gom 25, BARI Gom 28, E 28 and BAW 1170 showed more stress tolerance and the wheat genotypes- Satabdi, Sourav, BARI Gom 26, E 23, E 38, E 24, BAW 1163, BAW 1140 and BAW 1151 showed greater stress sensitivity than the others. Considering both moderate and high water deficit stress, BARI Gom 25, E 28 and BAW 1170 were found as tolerant and Sourav, E 23 and BAW 1140 were found as water deficit stress sensitive wheat genotypes. The Agriculturists 2017; 15(1) 81-91


2021 ◽  
Vol 67 (1) ◽  
pp. 29-41
Author(s):  
Farshad Sorkhi ◽  
Ramin Rostami ◽  
Kazem Ghassemi-Golezani

Abstract This research was conducted as a combined analysis with four replications in two years (2018 ‒ 2019). Treatments were irrigation up to 90%, 50%, and 20% field capacity (as normal irrigation, moderate and severe water deficit stresses, respectively) and foliar application of natural regulators (untreated as control, salicylic acid, spermidine, and methanol). Increasing water deficit stress was led to a significant increase in essential oil percentage and proline content and a significant decrease in yield parameters and seed yield. Most of the traits (except the percentage of essential oil) were affected by natural growth regulators. The highest seed yield (1,127.59 kg/ha), plant biomass (5,426.92 kg/ha), essential oil yield (22.67 kg/ha), and proline content (29.34 μmol/g fresh weight) were obtained in methanol treated plants under normal irrigation. However, the highest amount of these traits under moderate and severe water deficit was recorded for salicylic acid-treated plants. Therefore, foliar spray of methanol was a useful treatment for non-stress conditions, but, application of salicylic acid was the superior treatment for reducing the negative effects of water deficit stress on Foeniculum vulgare.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 857C-857
Author(s):  
Alireza Talaie* ◽  
Vali Rabiei ◽  
Ali Ebadi

Grapevine under arid and semi-arid are subjected to low soil water availability, accompanied by high levels of temperature and severe transpiration in the summer period. In spite of their deep root system, severe water stress may occur during that period. Therefore, study of morphological and physiological responses of grapevine cultivars to water stress, especially during the different phenological stages, are necessary. The effect of water deficit stress on morphological and physiological responses of four Iranian grapevine cultivars (Vitis vinifera L. cvs. Bidaneh Sephid, Yaghooti Shiraz, Khoshnav, and Siaveh) were studied. This investigation was conducted as a factorial experiment in a complete randomized block design with four replications. In this study, 1-year-old own rooted vines were planted outdoor in plastic bags. Water stress was begun 115 days after bud break and contained for 2 months. Some vegetative and biochemical characters of leaves were evaluated; photosynthesis and gas exchange was measured. The results of analysis of variance indicated that water deficit stress decreased total dry weight, root dry weight, leaf area, non soluble carbohydrate concentration, and chlorophyll content. The reduction of leaf area in `Yaghooti Shiraz' and total dry weight and root dry weight in `Bidaneh Sephid' were higher than two other cultivars. Under water deficit stress condition, the soluble carbohydrate concentration and proline content in grapevine cultivars increased. Net photosynthesis and gas exchange rate were markedly reduced in water deficit stressed vines.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1242
Author(s):  
Zikria Zafar ◽  
Fahad Rasheed ◽  
Rana Muhammad Atif ◽  
Muhammad Asif Javed ◽  
Muhammad Maqsood ◽  
...  

Reforestation efforts are being challenged as water stress is hampering the sapling growth and survival in arid to semiarid regions. A controlled experiment was conducted to evaluate the effect of foliar application of salicylic acid (SA) on water stress tolerance of Conocarpus erectus and Populus deltoides. Saplings were watered at 90%, 60%, and 30% of field capacity (FC), and half of the saplings under 60% and 30% FC were sprayed with 1.0 mM SA. Results indicated that dry weight production decreased significantly in Populus deltoides under both water deficit conditions, and leaf gas exchange parameters decreased significantly in both the species under both soil water deficit conditions. Foliar application of SA resulted in a significant increase in leaf gas exchange parameters, and compatible solutes, thereby increasing the dry weight production in both of the species under soil water deficit. Oxidative stress (hydrogen peroxide and superoxide anions) increased under soil water deficit and decreased after the foliar application of SA and was parallel to the increased antioxidant enzymes activity (superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase). Therefore, it can be concluded that foliar application of 1.0 mM SA can significantly improve the water stress tolerance in both species, however, positive impacts of SA application were higher in Conocarpus erectus due to improved photosynthetic capacity and increased antioxidant enzyme activity.


Sign in / Sign up

Export Citation Format

Share Document