scholarly journals Genetic variability in the peach palm genebank with RAPD markers

2010 ◽  
Vol 10 (3) ◽  
pp. 211-217 ◽  
Author(s):  
Michelly de Cristo Araújo ◽  
Doriane Picanço Rodrigues ◽  
Spartaco Astolfi Filho ◽  
Charles Roland Clement

Peach palm is a native Amazonian fruit species with broad genetic diversity in its wild and domesticated populations. This study completed the molecular characterization and genetic analysis of the accessions in the Peach Palm genebank, Brazil, using RAPD markers. Eight primers generated 132 markers, of which 128 were polymorphic. Average heterozigosity was 0.35, with 95.5% polymorphism. The genetic variability within the landraces (H S) was 0.32, while genetic divergence (G ST) was 0.09 among the four well-represented landraces. The average gene flow was 5.0, with high gene flow between the Solimões and Pampa Hermosa (Nm=10.07), and between the Putumayo and Solimões (Nm=10.73) landraces, all western landraces. The dendrograms of the Nei's and Rogers' genetic distances of the well-represented landraces presented similar groupings to previous analyses, with the Solimões, Putumayo and Pampa Hermosa landraces grouped together in western Amazonia, and distant from the Pará landrace in central and eastern Amazonia.

2007 ◽  
Vol 26 (3) ◽  
pp. 201-205
Author(s):  
Yan-Qiu Chen ◽  
Xiao-Fan Guo ◽  
Chang-Tian Li ◽  
Yu Li

Genetic Analysis ofInonotus ObliquusStrains by RAPDRAPD profiling of eightInonotus obliquusstrains isolated from sclerotia collected from different areas of China was conducted to determine the genetic variability within this important medicinal fungus and to better define relationships between the genotype and geographical origins of isolation. Twelve 10-mer primers generated a total of 167 stable and reproducible DNA fragments, of which 101 (60.5%) were polymorphic. DNA fingerprints revealed genetic diversity among the strains tested, but there was the little intraspecific difference between the fingerprints of individual strains. A phenogram constructed based on UPGMA analysis of genetic distances calculated from RAPD fragment data identified three distinct groupings: (1) BCX01 and BCX02, (2) JL01, JL02, JL03, JL04 and JL05, (3) HLJ01. Our data confirm that the genetic variability among different strains may be a useful ancillary tool for identifyingl. obliquussclerotia of different geographical origins.


2020 ◽  
Vol 49 (3) ◽  
pp. 765-775
Author(s):  
Amanda de Faria Santos ◽  
Nara C Chiarini Pena Barbosa ◽  
Thaís Coelho Thomazini ◽  
Adriana Coletto Morales

Abstract The species of the genus Ceraeochrysa, known as green lacewings or trash-carriers, are widely distributed along the Americas and its islands. In Brazil, 28 species are found, including Ceraeochrysa cincta (Schneider), Ceraeochrysa claveri (Navás), and Ceraeochrysa cubana (Hagen). These species are recorded on many crops, where they are often used for biological control. For this use, knowledge of the genetic features of the species is extremely important because they are associated to the species’ ability to withstand different conditions in new environments, such as variations of temperature and presence of pathogens. However, little is known about the genetic features of Ceraeochrysa species. Here, we analyze and compare the distribution of the genetic variability of C. cincta, C. claveri, and C. cubana in agroecosystem populations of southeast Brazil. We found a high genetic diversity in each of the three species, and no strong genetic structure was detected, such that genetic diversity is broadly shared among the crops and localities analyzed. We can conclude that there was a high gene flow among the sampled Ceraeochrysa populations (natural or driven by anthropic action) since the exchange of seedlings among crops can lead to the distribution of the specimens.


2000 ◽  
Vol 90 (8) ◽  
pp. 901-908 ◽  
Author(s):  
S. Salamati ◽  
J. Zhan ◽  
J. J. Burdon ◽  
B. A. McDonald

Restriction fragment length polymorphism (RFLP) markers were used to compare the genetic structure of field populations of Rhynchosporium secalis from barley. A total of 543 isolates representing 8 field populations were sampled from Australia, California, Finland, and Norway. Gene and genotype diversity were high in all populations. Nei's average gene diversity across seven RFLP loci was 0.513. Hierarchical gene diversity analysis showed that 9% of the total genetic variability was distributed among continents, 4% was distributed among fields within continents, and 13% was distributed among collection stations within a field. The majority (74%) of genetic variability was distributed within collection areas of approximately 1 m2 within fields. Gene flow appears to be significant on a regional scale but more restricted among continents. Allele frequencies were significantly different at several RFLP loci. Genetic distances were small among populations within regions and large between regions. Pairwise comparisons of genotype diversity in the populations revealed significant differences among populations that were related mainly to differences in sampling strategies. Isolates from Norway and Finland showed a lower copy hybridization pattern with probe pRS26. This probe functioned as a fingerprint probe for the California and Australian isolates. Seven out of the eight populations studied were at gametic equilibrium for RFLP loci, suggesting that R. secalis populations in Norway, Finland, and Australia undergo regular recombination, although a teleomorph has not yet been recognized.


Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 201-210 ◽  
Author(s):  
F. N. Wachira ◽  
R. Waugh ◽  
W. Powell ◽  
C. A. Hackett

Camellia sinensis is a beverage tree crop native to Southeast Asia and introductions have been made into several nonindigenous countries. No systematic assessment of genetic variability in tea has been done anywhere. In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and taxonomic relationships in 38 clones belonging to the three tea varieties, assamica, sinensis, and assamica ssp. lasiocalyx. Extensive genetic variability was detected between species, which was partitioned into between and within population components. Seventy percent of the variation was detected within populations. Analyses based on band sharing separated the three populations in a manner consistent with both the present taxonomy of tea and with the known pedigrees of some clones. RAPD analysis also discriminated all of the 38 commercial clones, even those which cannot be distinguished on the basis of morphological and phenotypic traits.Key words: genetic diversity, RAPDs, Camellia sinensis.


2005 ◽  
Vol 40 (10) ◽  
pp. 975-980 ◽  
Author(s):  
Maria Imaculada Zucchi ◽  
José Baldin Pinheiro ◽  
Lázaro José Chaves ◽  
Alexandre Siqueira Guedes Coelho ◽  
Mansuêmia Alves Couto ◽  
...  

This study was carried out to assess the genetic variability of ten "cagaita" tree (Eugenia dysenterica) populations in Southeastern Goiás. Fifty-four randomly amplified polymorphic DNA (RAPD) loci were used to characterize the population genetic variability, using the analysis of molecular variance (AMOVA). A phiST value of 0.2703 was obtained, showing that 27.03% and 72.97% of the genetic variability is present among and within populations, respectively. The Pearson correlation coefficient (r) among the genetic distances matrix (1 - Jaccard similarity index) and the geographic distances were estimated, and a strong positive correlation was detected. Results suggest that these populations are differentiating through a stochastic process, with restricted and geographic distribution dependent gene flow.


2013 ◽  
Vol 4 (4) ◽  
pp. 290-298
Author(s):  
Elainy Martins Oliveira ◽  
Waldesse Oliveira Junior ◽  
Jaqueline Oliveira ◽  
Henrique Guilhon De Castro

Ageratum conyzoides (Asteraceae) is known in Brazil for its medicinal properties being mainly used as painkiller and anti-inflammatory. Due to the existence of few genetic studies for this species, this work aimed to characterize the genetic diversity among nine accessions from different sites at Tocantins state, to provide information about its genetic resources. Similarity coefficients obtained varied from 48% to 80%, result of amplification of 102 fragments, of which 72 (70.5%) were polymorphic. Groupment analysis allowed the differentiation in three groups. One of them was distinguished because it presented the highest similarity among all, being composed by ANA and NAT (80% similarity). In general, these data showed there is low degree of association between the geographic location of the accessions and the genetic distances. So, the collected accession ns in Tocantins state presented considerable genetic variability and the efficiency of RAPD markers for such characterization was here proven.


2018 ◽  
Vol 22 (1) ◽  
pp. 22
Author(s):  
Jayusman Jayusman ◽  
Muhammad Na’iem ◽  
Sapto Indrioko ◽  
Eko Bhakti Hardiyanto ◽  
ILG Nurcahyaningsih

Surian Toona sinensis Roem is one of the most widely planted species in Indonesia. This study aimed to estimate the genetic diversity between a number of surian populations in a progeny test using RAPD markers, with the goal of proposing management strategies for a surian breeding program. Ninety-six individual trees from 8 populations of surian were chosen as samples for analysis. Eleven polymorphic primers (OP-B3, OP-B4, OP-B10, OP-H3, OP-Y6, OP-Y7, OP-Y8, OP-Y10, OP-Y11, OP-Y14, and OP-06) producing reproducible bands were analyzed for the 96 trees, with six trees per family sampled. Data were analyzed using GenAlEx 6.3, NTSYS 2.02. The observed percentage of polymorphic loci ranged from 18.2% to 50%. The mean level of genetic diversity among the surian populations was considered to be moderate (He 0.304). Cluster analysis grouped the genotypes into two main clusters, at similarity levels of 0.68 and 0.46. The first two axes of the PCoA explained 46.16% and 25.54% of the total variation, respectively. The grouping of samples into clusters and subclusters did not correspond with family and their distances, but the grouping was in line with the genetic distances of the samples.


2011 ◽  
Vol 72 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Leon Mejnartowicz

Twenty-eight isozymic loci were studied in the Beskid Mts., in four populations of common silver-fir (<em>Abies alba</em>): one in Beskid Makowski (BM) and three populations in Beskid Sądecki (BS). Their genetic variation and diversity were analyzed, and Nei's genetic distances between the populations were calculated. The results show that the geographical distance between the BM population and the three BS populations is reflected in genetic distances. The BM population is clearly distinct from the others. It has the lowest genetic diversity (<em>I</em> = <em>0.42</em>), percentage of polymorphic loci <em>(%PoL </em>= <em>64.29</em>) and number of rare alleles (<em>NoRa </em>= <em>5</em>). Besides, the BM population has the highest observed heterozygosity (<em>Ho </em>= <em>0.291</em>), which exceeds the expected heterozygosity (<em>He </em>= <em>0.254</em>), estimated on the basis of the Hardy-Weinberg Principle. On the contrary, BS populations are in the state of equilibrium, which is manifested, in similar values of <em>He </em>= <em>0.262 </em>and <em>Ho </em>= <em>0.264</em>.


2018 ◽  
Vol 16 (5) ◽  
pp. 469-477 ◽  
Author(s):  
Georgios F. Tsanakas ◽  
Photini V. Mylona ◽  
Katerina Koura ◽  
Anthoula Gleridou ◽  
Alexios N. Polidoros

AbstractThe Greek lentil landrace ‘Eglouvis’ is cultivated continuously at the Lefkada island for more than 400 years. It has great taste, high nutritional value and high market price. In the present study, we used morphological and molecular markers to estimate genetic diversity within the landrace. Morphological analysis was based on characteristics of the seed. Molecular analysis was performed using simple sequence repeat (SSR) molecular markers in a high-resolution melting (HRM) approach. ‘Samos’ and ‘Demetra’, two of the most widely cultivated commercial lentil varieties in Greece, were used for comparisons. Morphological analysis was performed with 584 seeds randomly selected from a lot. Analysis of seed dimensions and colour distributed the samples in different categories and highlighted the phenotypic variability in ‘Eglouvis’ lentil seeds. Genetic variability was estimated from 91 individual DNA samples with 11 SSR markers using HRM analysis. Genotyping was based upon the shape of the melting curves and the difference plots; all polymerase chain reaction products were also run on agarose gels. Genetic distances of individuals and principal coordinates analysis suggested that ‘Eglouvis’ landrace has a unique genetic background that significantly differs from ‘Samos’ and ‘Demetra’ and no overlapping could be detected. Genetic variability within the ‘Eglouvis’ landrace can be considered in targeted breeding programs as a significant phytogenetic resource of lentils in Greece.


2019 ◽  
Vol 115 (7/8) ◽  
Author(s):  
Damian W. Ponsonby ◽  
M. Thabang Madisha ◽  
Schwaibold Schwaibold ◽  
Desiré L. Dalton

Genetic diversity is the basis of the evolutionary potential of species to respond to environmental changes. However, restricting the movement of species can result in populations becoming less connected which can reduce gene flow and can subsequently result in a loss of genetic diversity. Urban expansion can lead to the fragmentation of habitats which affects the ability of species to move freely between areas. In this study, the genetic diversity of the African clawless otter (Aonyx capensis) in Gauteng (South Africa) was assessed using non-invasive sampling techniques. DNA was extracted from spraint (faecal) samples collected along nine rivers and genotyped using 10 microsatellites to assess population structure and genetic diversity. Samples were grouped based on locality and by catchment to determine whether isolated subpopulations exist. Genetic diversity of A. capensis in Gauteng was found to be low (mean observed heterozygosity (Ho)=0.309). Analysis of genetic structure provides support for the otter populations being panmictic with high gene flow between populations from different rivers. Results from the study indicate that the movement of A. capensis is not affected by physical barriers in urbanised areas. However, because the genetic diversity of the species in the study area is low, these animals may not be able to cope with future environmental changes.


Sign in / Sign up

Export Citation Format

Share Document