scholarly journals Nitric oxide releasing-dendrimers: an overview

2013 ◽  
Vol 49 (spe) ◽  
pp. 1-14 ◽  
Author(s):  
Antonio Carlos Roveda Júnior ◽  
Douglas Wagner Franco

Platforms able to storage, release or scavenge NO in a controlled and specific manner is interesting for biological applications. Among the possible matrices for these purposes, dendrimers are excellent candidates for that. These molecules have been used as drug delivery systems and exhibit interesting properties, like the possibility to perform chemical modifications on dendrimers surface, the capacity of storage high concentrations of compounds of interest in the same molecule and the ability to improve the solubility and the biocompatibility of the compounds bonded to it. This review emphasizes the recent progress in the development and in the biological applications of different NO-releasing dendrimers and the nitric oxide release pathways in these compounds.

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 437
Author(s):  
Milena Álvarez-Viñas ◽  
Sandra Souto ◽  
Noelia Flórez-Fernández ◽  
Maria Dolores Torres ◽  
Isabel Bandín ◽  
...  

Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.


2021 ◽  
Vol 184 ◽  
pp. 218-234
Author(s):  
Paulo Vitor França Lemos ◽  
Henrique Rodrigues Marcelino ◽  
Lucas Guimarães Cardoso ◽  
Carolina Oliveira de Souza ◽  
Janice Izabel Druzian

2017 ◽  
Vol 508 ◽  
pp. 517-524 ◽  
Author(s):  
Qingtao Liu ◽  
Jinming Hu ◽  
Michael R. Whittaker ◽  
Thomas P. Davis ◽  
Ben J. Boyd

Author(s):  
Wen-Jie Xu ◽  
Jia-Xin Cai ◽  
Yong-Jiang Li ◽  
Jun-Yong Wu ◽  
Daxiong Xiang

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 3 ◽  
Author(s):  
Fadwa Odeh ◽  
Hamdi Nsairat ◽  
Walhan Alshaer ◽  
Mohammad A. Ismail ◽  
Ezaldeen Esawi ◽  
...  

Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document