scholarly journals Feeding Behavior Patterns of Leptocorisa chinensis (Hemiptera: Alydidae) Nymphs on Host and Nonhost Plants

2010 ◽  
Vol 103 (4) ◽  
pp. 585-591
Author(s):  
Mami Ishizaki ◽  
Tetsuya Yasuda ◽  
Tomonari Watanabe
2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 237-238
Author(s):  
Jocelyn R Johnson ◽  
Gordon E Carstens ◽  
Ira Parsons ◽  
Luis O Tedeschi

Abstract Objectives of this study were to evaluate the use of feeding behavior traits to predict individual-animal RFI and DMI of growing cattle fed high-grain finishing diets. Performance, DMI, and feeding behavior data were collected from 1 study utilizing 498 Angus-based composite steers (Study 1), and 2 studies utilizing 408 heifers (Study 2) and 321 steers (Study 3) composed of Brangus, Braford, Simbrah, and Angus breeds. DMI and feeding behavior traits were measured using a GrowSafe system, and RFI calculated within trial. Seventeen feeding behavior traits were evaluated: Frequency and duration of bunk visit (BV) and meal events, head-down duration (HDD), average meal length, maximum non-feeding interval, corresponding day-to-day variation (SD) of these traits, and ratios of HDD per BV duration, HDD per meal duration, and BV events per meal event. Partial least squares regression (PLSR) models for DMI and RFI were calibrated using data from Study 1 and 2, and independently validated using Study 3. Independent variables for the DMI models included mid-test BW0.75, ADG, frame size, and ultrasound traits, with and without feeding behavior traits, and for the RFI model included frame size, ultrasound, and feeding behavior traits. For prediction of DMI, validation R2 (R2v) of the base model (Mid-test BW0.75, ADG, frame size, and ultrasound) was 0.46. Inclusion of feeding behavior traits to the base model increased R2v to 0.66. For prediction of RFI, R2v was low (0.37), but the model classified 51% of calves into the correct RFI group (± 0.50 SD), with only 7% incorrectly classified across 2 RFI groups. Ongoing development of biosensor-based technologies to quantify feeding behavior patterns provides opportunities to predict DMI in support of precision nutrition, and reduce costs of identifying feed-efficient cattle. Further research is warranted to evaluate the robustness of PLSR-based models to predict RFI and DMI in cattle.


2004 ◽  
Vol 20 (4) ◽  
pp. 365-371 ◽  
Author(s):  
C.H. Parsons ◽  
M.L. Galyean ◽  
R.S. Swingle ◽  
P.J. Defoor ◽  
G.A. Nunnery ◽  
...  

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 165-166
Author(s):  
Megan N Hall ◽  
Gordon E Carstens ◽  
Monty Kerley ◽  
Lauren Wottlin

Abstract Objectives of this study were to evaluate the effects of DFM with and without Monensin plus Tylan on feed efficiency and feeding behavior patterns in steers. Crossbred steers (n = 125; BW = 303 kg) were randomly assigned to 1 of 4 treatments in a 2 x 2 factorial design: (1) control (no feed additives), (2) DFM only (25 g/d; Natur’s Way), (3) Monensin (40 g/ton) plus Tylan only (MON) and (4) DFM and MON. In pens with GrowSafe feedbunks, steers were fed the grower diet for 14 d and transitioned to a finisher diet on 16 d. During the grower/transition phase, MON-fed steers had 9.5% higher (P < 0.05) ADG and improved F:G (7.8 vs 8.94; P = 0.06) and RFI (-0.28 vs 0.27 kg/d; P < 0.01) vs CON-fed steers. DFM-fed steers had lower (P < 0.01) ADG, but similar F:G and RFI than CON-fed steers. Daily variances of bunk-visit event frequencies were reduced (P < 0.01) in MON- vs CON-fed steers. During the finisher period, MON x DFM interactions (P < 0.10) were observed for ADG and F:G. MON-fed steers had numerically improved F:G (5%) when DFM was excluded, but not when DFM was included. MON-fed steers had lower RFI (P < 0.01; -0.23 vs 0.23 kg/d), whereas DFM-fed steers had higher RFI (P < 0.01) compared to respective controls. MON-fed steers ate less (P < 0.01) DMI, spent 9% more (P < 0.05) time consuming meals and had 14% slower (P < 0.01) meal eating rate then CON-fed steers. The DFM did not positively affect feed efficiency. Although the magnitude of improvement in feed efficiency due to MON was small, results demonstrated that MON may minimize digestive upsets by reducing daily variation in feeding behavior during diet transition and slow meal-eating rate on high-grain diets.


2020 ◽  
Vol 4 (2) ◽  
pp. 986-992 ◽  
Author(s):  
Amanda J Cross ◽  
Tami M Brown-Brandl ◽  
Brittney N Keel ◽  
Joseph P Cassady ◽  
Gary A Rohrer

Abstract Heat stress has negative impacts on pork production, particularly in the grow-finish phase. During heat stress events, the feeding behavior of pigs is altered to reduce heat production. Several different systems have been developed to study feeding behavior. Most systems are not accurate representations of grow-finish commercial production as feed intake is monitored for only one pig at a time. The objective of this study was to utilize a feed monitoring system, representative of commercial conditions, to determine feeding behavior patterns of grow-finish pigs throughout the year and to identify changes that occurred during heat stress events. Feeder visit data were collected on barrows and gilts (n = 932) from three different sire breeds, Landrace, Yorkshire, and Duroc, between May 2014 and April 2016. Days in the study were partitioned into groups based on their maximum temperature–humidity index (THI), where a THI less than 23.33 °C was classified as “Normal”, a THI between 23.33 and 26.11 °C was classified as “Alert”, a THI between 26.11 and 28.88 °C was classified as “Danger”, and a THI greater than 28.88 °C was classified as “Emergency”. Feeding behavioral differences among breeds and sex were observed across all THI categories. Landrace-sired pigs had fewer feeder visits compared to Duroc- and Yorkshire-sired pigs. Gilts had fewer feeder visits than barrows in all THI categories. Differences in feeding behavior patterns between THI categories demonstrated that heat stress reduced the feeding duration of Landrace-sired pigs without any dramatic effects on the other pigs in the study. During elevated temperatures, all pigs tended to increase feeding events during the early (03:00–05:59) and late (18:00–20:59) periods of the day. Utilizing a feed monitoring system that is a more accurate representation of commercial conditions will lead to a greater understanding of feeding behavior among breed types and sexes during heat stress, allowing producers to enhance their ability to properly care for their pigs during both normal and heat stress events.


Author(s):  
Lauren R Wottlin ◽  
Gordon E Carstens ◽  
William C Kayser ◽  
William E Pinchak ◽  
Jennifer M Thomson ◽  
...  

Abstract Indicator traits associated with disease resiliency would be useful to improve the health and welfare of feedlot cattle. A post-hoc analysis of data collected previously (Kayser et al., 2019a) was conducted to investigate differences in immunologic, physiologic, and behavioral responses of steers (N = 36, initial BW = 386 ± 24 kg) that had differential haptoglobin (HPT) responses to an experimentally-induced challenge with Mannheimia haemolytica (MH). Rumen temperature, DMI and feeding behavior data were collected continuously, and serial blood samples were collected following the MH challenge. Retrospectively, it was determined that 9 of the 18 MH-challenged steers mounted a minimal HPT response, despite having similar leukocyte and temperature responses to other MH-challenged steers with a greater HPT response. Our objective was to examine differences in behavioral and physiological responses between MH-challenged HPT responsive (RES; n = 9), MH-challenged HPT non-responsive (NON; n = 9), and phosphate-buffered saline (PBS)-inoculated controls (CON; n=18). Additionally, 1H NMR analysis was conducted to determine if the HPT responsive phenotype affected serum metabolite profiles. The RES steers had lesser (P < 0.05) cortisol concentrations than NON and CON steers. The magnitude of the increases in neutrophil concentrations and rumen temperature, and the reduction in DMI following the MH challenge were greatest (P < 0.05) in RES steers. Univariate analysis of serum metabolites indicated differences between RES, NON and CON steers following the MH challenge, however, multivariate analysis revealed no difference between HPT responsive phenotypes. Prior to the MH challenge, RES steers had longer (P < 0.05) head down and bunk visit durations, slower eating rates (P < 0.01) and greater (P < 0.05) daily variances in bunk visit frequency and head down duration compared to NON steers, suggesting that feeding behavior patterns were associated with the HPT responsive phenotype. During the 28-d post-challenge period, RES steers had decreased (P < 0.05) final BW, tended (P = 0.06) to have lesser DMI, and had greater (P < 0.05) daily variances in head down and bunk visit durations compared to NON steers, which may have been attributed to their greater acute-phase protein response to the MH challenge. These results indicate that the HPT responsive phenotype affected feeding behavior patterns and may be associated with disease-resiliency in beef cattle.


2021 ◽  
Author(s):  
Yusuke Fujioka ◽  
Kaori Kawai ◽  
Kuniyuki Endo ◽  
Minaka Ishibashi ◽  
Nobuyuki Iwade ◽  
...  

Psychosocial stress can impact feeding behavior outcomes. Although many studies have examined alterations to food intake, little is known about how stress affects feeding behavior patterns. To determine the impact of psychological stress on feeding behavior patterns, mice were subjected to various psychosocial stressors (social isolation, intermittent high-fat-diet, or physical restraint) prior to timed observations in a feeding arena that incorporated multiple bait loci. In addition, in vivo microdialysis was used to assess the effects of stressors on the reward system by measuring dopamine levels in the nucleus accumbens (NAcc) shell. Impaired feeding behavior patterns characterized by significant deviations in bait selection (i.e. fixated feeding) and prolonged periods of eating (i.e. protracted feeding) were observed in stressed mice relative to non-stressed controls. In addition to clear behavioral effects, the stressors also negatively impacted dopamine levels at the nucleus accumbens shell. Normalization of dopamine reversed the fixated feeding behavior, whereas specifically inhibiting neuronal activity in the dopaminergic neurons of the ventral tegmental area that project to the nucleus accumbens shell caused similar impairments in feeding. Given that the deviations were not consistently accompanied by changes in the amount of bait consumed, body weight, or metabolic factors, the qualitative effects of psychosocial stressors on feeding behavior likely reflect perturbations to a critical pathway in the mesolimbic dopamine system. These findings provide compelling evidence that aberrations in feeding behavior patterns can be developed as sensitive biomarkers of psychosocial stress and possibly a prodromal state of neuropsychiatric diseases.


Sign in / Sign up

Export Citation Format

Share Document