scholarly journals Multi-Attribute Transfer via Disentangled Representation

Author(s):  
Jianfu Zhang ◽  
Yuanyuan Huang ◽  
Yaoyi Li ◽  
Weijie Zhao ◽  
Liqing Zhang

Recent studies show significant progress in image-to-image translation task, especially facilitated by Generative Adversarial Networks. They can synthesize highly realistic images and alter the attribute labels for the images. However, these works employ attribute vectors to specify the target domain which diminishes image-level attribute diversity. In this paper, we propose a novel model formulating disentangled representations by projecting images to latent units, grouped feature channels of Convolutional Neural Network, to disassemble the information between different attributes. Thanks to disentangled representation, we can transfer attributes according to the attribute labels and moreover retain the diversity beyond the labels, namely, the styles inside each image. This is achieved by specifying some attributes and swapping the corresponding latent units to “swap” the attributes appearance, or applying channel-wise interpolation to blend different attributes. To verify the motivation of our proposed model, we train and evaluate our model on face dataset CelebA. Furthermore, the evaluation of another facial expression dataset RaFD demonstrates the generalizability of our proposed model.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Zhuorong Li ◽  
Wanliang Wang ◽  
Yanwei Zhao

Image translation, where the input image is mapped to its synthetic counterpart, is attractive in terms of wide applications in fields of computer graphics and computer vision. Despite significant progress on this problem, largely due to a surge of interest in conditional generative adversarial networks (cGANs), most of the cGAN-based approaches require supervised data, which are rarely available and expensive to provide. Instead we elaborate a common framework that is also applicable to the unsupervised cases, learning the image prior by conditioning the discriminator on unaligned targets to reduce the mapping space and improve the generation quality. Besides, domain-adversarial training inspired by domain adaptation is proposed to capture discriminative and expressive features, for the purpose of improving fidelity. Effectiveness of our method is demonstrated by compelling experimental results of our method and comparisons with several baselines. As for the generality, it could be analyzed from two perspectives: adaptation to both supervised and unsupervised setting and the diversity of tasks.


Author(s):  
David Keetae Park ◽  
Seungjoo Yoo ◽  
Hyojin Bahng ◽  
Jaegul Choo ◽  
Noseong Park

Recently, generative adversarial networks (GANs) have shown promising performance in generating realistic images. However, they often struggle in learning complex underlying modalities in a given dataset, resulting in poor-quality generated images. To mitigate this problem, we present a novel approach called mixture of experts GAN (MEGAN), an ensemble approach of multiple generator networks. Each generator network in MEGAN specializes in generating images with a particular subset of modalities, e.g., an image class. Instead of incorporating a separate step of handcrafted clustering of multiple modalities, our proposed model is trained through an end-to-end learning of multiple generators via gating networks, which is responsible for choosing the appropriate generator network for a given condition. We adopt the categorical reparameterization trick for a categorical decision to be made in selecting a generator while maintaining the flow of the gradients. We demonstrate that individual generators learn different and salient subparts of the data and achieve a multiscale structural similarity (MS-SSIM) score of 0.2470 for CelebA and a competitive unsupervised inception score of 8.33 in CIFAR-10.


With increasing technological advancements, there is a need for automation in this ever-evolving world. This may result in improved efficiency, faster work and enhanced capabilities. Sketch-to-image translation is an image processing application that can be used as a helping hand in a variety of fields. One of these is the utilization of Generative Adversarial Networks to guide edges to photographs, with the assistance of image generators and discriminators who work connected to produce realistic images. We have also incorporated Histogram of Oriented Gradients (HOG) as a feature/image descriptor. The HOG technique counts the gradient orientations to differentiate the target and the background. Support Vector Machine (SVM) is the classifier used for classification. This HOG and SVM model can be improved, altered and executed as multi-program software.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Gan ◽  
Junxin Gong ◽  
Mao Ye ◽  
Yang Qian ◽  
Kedi Liu ◽  
...  

Unpaired image translation is a challenging problem in computer vision, while existing generative adversarial networks (GANs) models mainly use the adversarial loss and other constraints to model. But the degree of constraint imposed on the generator and the discriminator is not enough, which results in bad image quality. In addition, we find that the current GANs-based models have not yet been implemented by adding an auxiliary domain, which is used to constrain the generator. To solve the problem mentioned above, we propose a multiscale and multilevel GANs (MMGANs) model for image translation. In this model, we add an auxiliary domain to constrain generator, which combines this auxiliary domain with the original domains for modelling and helps generator learn the detailed content of the image. Then we use multiscale and multilevel feature matching to constrain the discriminator. The purpose is to make the training process as stable as possible. Finally, we conduct experiments on six image translation tasks. The results verify the validity of the proposed model.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 919
Author(s):  
Wanlu Jiang ◽  
Chenyang Wang ◽  
Jiayun Zou ◽  
Shuqing Zhang

The field of mechanical fault diagnosis has entered the era of “big data”. However, existing diagnostic algorithms, relying on artificial feature extraction and expert knowledge are of poor extraction ability and lack self-adaptability in the mass data. In the fault diagnosis of rotating machinery, due to the accidental occurrence of equipment faults, the proportion of fault samples is small, the samples are imbalanced, and available data are scarce, which leads to the low accuracy rate of the intelligent diagnosis model trained to identify the equipment state. To solve the above problems, an end-to-end diagnosis model is first proposed, which is an intelligent fault diagnosis method based on one-dimensional convolutional neural network (1D-CNN). That is to say, the original vibration signal is directly input into the model for identification. After that, through combining the convolutional neural network with the generative adversarial networks, a data expansion method based on the one-dimensional deep convolutional generative adversarial networks (1D-DCGAN) is constructed to generate small sample size fault samples and construct the balanced data set. Meanwhile, in order to solve the problem that the network is difficult to optimize, gradient penalty and Wasserstein distance are introduced. Through the test of bearing database and hydraulic pump, it shows that the one-dimensional convolution operation has strong feature extraction ability for vibration signals. The proposed method is very accurate for fault diagnosis of the two kinds of equipment, and high-quality expansion of the original data can be achieved.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


Author(s):  
Masoumeh Zareapoor ◽  
Jie Yang

Image-to-Image translation aims to learn an image from a source domain to a target domain. However, there are three main challenges, such as lack of paired datasets, multimodality, and diversity, that are associated with these problems and need to be dealt with. Convolutional neural networks (CNNs), despite of having great performance in many computer vision tasks, they fail to detect the hierarchy of spatial relationships between different parts of an object and thus do not form the ideal representative model we look for. This article presents a new variation of generative models that aims to remedy this problem. We use a trainable transformer, which explicitly allows the spatial manipulation of data within training. This differentiable module can be augmented into the convolutional layers in the generative model, and it allows to freely alter the generated distributions for image-to-image translation. To reap the benefits of proposed module into generative model, our architecture incorporates a new loss function to facilitate an effective end-to-end generative learning for image-to-image translation. The proposed model is evaluated through comprehensive experiments on image synthesizing and image-to-image translation, along with comparisons with several state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document