Rainfall prediction using generative adversarial networks with convolution neural network

2021 ◽  
Author(s):  
R. Venkatesh ◽  
C. Balasubramanian ◽  
M. Kaliappan
Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 919
Author(s):  
Wanlu Jiang ◽  
Chenyang Wang ◽  
Jiayun Zou ◽  
Shuqing Zhang

The field of mechanical fault diagnosis has entered the era of “big data”. However, existing diagnostic algorithms, relying on artificial feature extraction and expert knowledge are of poor extraction ability and lack self-adaptability in the mass data. In the fault diagnosis of rotating machinery, due to the accidental occurrence of equipment faults, the proportion of fault samples is small, the samples are imbalanced, and available data are scarce, which leads to the low accuracy rate of the intelligent diagnosis model trained to identify the equipment state. To solve the above problems, an end-to-end diagnosis model is first proposed, which is an intelligent fault diagnosis method based on one-dimensional convolutional neural network (1D-CNN). That is to say, the original vibration signal is directly input into the model for identification. After that, through combining the convolutional neural network with the generative adversarial networks, a data expansion method based on the one-dimensional deep convolutional generative adversarial networks (1D-DCGAN) is constructed to generate small sample size fault samples and construct the balanced data set. Meanwhile, in order to solve the problem that the network is difficult to optimize, gradient penalty and Wasserstein distance are introduced. Through the test of bearing database and hydraulic pump, it shows that the one-dimensional convolution operation has strong feature extraction ability for vibration signals. The proposed method is very accurate for fault diagnosis of the two kinds of equipment, and high-quality expansion of the original data can be achieved.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


Author(s):  
Jianfu Zhang ◽  
Yuanyuan Huang ◽  
Yaoyi Li ◽  
Weijie Zhao ◽  
Liqing Zhang

Recent studies show significant progress in image-to-image translation task, especially facilitated by Generative Adversarial Networks. They can synthesize highly realistic images and alter the attribute labels for the images. However, these works employ attribute vectors to specify the target domain which diminishes image-level attribute diversity. In this paper, we propose a novel model formulating disentangled representations by projecting images to latent units, grouped feature channels of Convolutional Neural Network, to disassemble the information between different attributes. Thanks to disentangled representation, we can transfer attributes according to the attribute labels and moreover retain the diversity beyond the labels, namely, the styles inside each image. This is achieved by specifying some attributes and swapping the corresponding latent units to “swap” the attributes appearance, or applying channel-wise interpolation to blend different attributes. To verify the motivation of our proposed model, we train and evaluate our model on face dataset CelebA. Furthermore, the evaluation of another facial expression dataset RaFD demonstrates the generalizability of our proposed model.


Author(s):  
Yao Ni ◽  
Dandan Song ◽  
Xi Zhang ◽  
Hao Wu ◽  
Lejian Liao

Generative adversarial networks (GANs) have shown impressive results, however, the generator and the discriminator are optimized in finite parameter space which means their performance still need to be improved. In this paper, we propose a novel approach of adversarial training between one generator and an exponential number of critics which are sampled from the original discriminative neural network via dropout. As discrepancy between outputs of different sub-networks of a same sample can measure the consistency of these critics, we encourage the critics to be consistent to real samples and inconsistent to generated samples during training, while the generator is trained to generate consistent samples for different critics. Experimental results demonstrate that our method can obtain state-of-the-art Inception scores of 9.17 and 10.02 on supervised CIFAR-10 and unsupervised STL-10 image generation tasks, respectively, as well as achieve competitive semi-supervised classification results on several benchmarks. Importantly, we demonstrate that our method can maintain stability in training and alleviate mode collapse.


2020 ◽  
Vol 4 (2) ◽  
pp. 11
Author(s):  
Shayan Taheri ◽  
Aminollah Khormali ◽  
Milad Salem ◽  
Jiann-Shiun Yuan

In this work, we propose a novel defense system against adversarial examples leveraging the unique power of Generative Adversarial Networks (GANs) to generate new adversarial examples for model retraining. To do so, we develop an automated pipeline using combination of pre-trained convolutional neural network and an external GAN, that is, Pix2Pix conditional GAN, to determine the transformations between adversarial examples and clean data, and to automatically synthesize new adversarial examples. These adversarial examples are employed to strengthen the model, attack, and defense in an iterative pipeline. Our simulation results demonstrate the success of the proposed method.


2018 ◽  
Vol 315 ◽  
pp. 412-424 ◽  
Author(s):  
Han Liu ◽  
Jianzhong Zhou ◽  
Yanhe Xu ◽  
Yang Zheng ◽  
Xuanlin Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document