scholarly journals Multiple Birds with One Stone: Beating 1/2 for EFX and GMMS via Envy Cycle Elimination

2020 ◽  
Vol 34 (02) ◽  
pp. 1790-1797 ◽  
Author(s):  
Georgios Amanatidis ◽  
Evangelos Markakis ◽  
Apostolos Ntokos

Several relaxations of envy-freeness, tailored to fair division in settings with indivisible goods, have been introduced within the last decade. Due to the lack of general existence results for most of these concepts, great attention has been paid to establishing approximation guarantees. In this work, we propose a simple algorithm that is universally fair in the sense that it returns allocations that have good approximation guarantees with respect to four such fairness notions at once. In particular, this is the first algorithm achieving a (φ−1)-approximation of envy-freeness up to any good (EFX) and a 2/φ+2 -approximation of groupwise maximin share fairness (GMMS), where φ is the golden ratio. The best known approximation factor, in polynomial time, for either one of these fairness notions prior to this work was 1/2. Moreover, the returned allocation achieves envy-freeness up to one good (EF1) and a 2/3-approximation of pairwise maximin share fairness (PMMS). While EFX is our primary focus, we also exhibit how to fine-tune our algorithm and improve further the guarantees for GMMS or PMMS.Finally, we show that GMMS—and thus PMMS and EFX—allocations always exist when the number of goods does not exceed the number of agents by more than two.

2021 ◽  
Vol 9 (2) ◽  
pp. 1-19
Author(s):  
Z. Li ◽  
A. Vetta

We consider the fair division of indivisible items using the maximin shares measure. Recent work on the topic has focused on extending results beyond the class of additive valuation functions. In this spirit, we study the case where the items form a hereditary set system. We present a simple algorithm that allocates each agent a bundle of items whose value is at least 0.3666 times the maximin share of the agent. This improves upon the current best known guarantee of 0.2 due to Ghodsi et al. The analysis of the algorithm is almost tight; we present an instance where the algorithm provides a guarantee of at most 0.3738. We also show that the algorithm can be implemented in polynomial time given a valuation oracle for each agent.


Author(s):  
Siddharth Barman ◽  
Sanath Kumar Krishnamurthy

We study Fisher markets that admit equilibria wherein each good is integrally assigned to some agent. While strong existence and computational guarantees are known for equilibria of Fisher markets with additive valuations (Eisenberg and Gale 1959; Orlin 2010), such equilibria, in general, assign goods fractionally to agents. Hence, Fisher markets are not directly applicable in the context of indivisible goods. In this work we show that one can always bypass this hurdle and, up to a bounded change in agents’ budgets, obtain markets that admit an integral equilibrium. We refer to such markets as pure markets and show that, for any given Fisher market (with additive valuations), one can efficiently compute a “near-by,” pure market with an accompanying integral equilibrium.Our work on pure markets leads to novel algorithmic results for fair division of indivisible goods. Prior work in discrete fair division has shown that, under additive valuations, there always exist allocations that simultaneously achieve the seemingly incompatible properties of fairness and efficiency (Caragiannis et al. 2016); here fairness refers to envyfreeness up to one good (EF1) and efficiency corresponds to Pareto efficiency. However, polynomial-time algorithms are not known for finding such allocations. Considering relaxations of proportionality and EF1, respectively, as our notions of fairness, we show that fair and Pareto efficient allocations can be computed in strongly polynomial time.


Author(s):  
Vincent Conitzer ◽  
Rupert Freeman ◽  
Nisarg Shah ◽  
Jennifer Wortman Vaughan

We consider the problem of fairly dividing a collection of indivisible goods among a set of players. Much of the existing literature on fair division focuses on notions of individual fairness. For instance, envy-freeness requires that no player prefer the set of goods allocated to another player to her own allocation. We observe that an algorithm satisfying such individual fairness notions can still treat groups of players unfairly, with one group desiring the goods allocated to another. Our main contribution is a notion of group fairness, which implies most existing notions of individual fairness. Group fairness (like individual fairness) cannot be satisfied exactly with indivisible goods. Thus, we introduce two “up to one good” style relaxations. We show that, somewhat surprisingly, certain local optima of the Nash welfare function satisfy both relaxations and can be computed in pseudo-polynomial time by local search. Our experiments reveal faster computation and stronger fairness guarantees in practice.


Author(s):  
Zbigniew Lonc ◽  
Miroslaw Truszczynski

The problem of fair division of indivisible goods is a fundamental problem of social choice. Recently, the problem was extended to the setting when goods form a graph and the goal is to allocate goods to agents so that each agent's bundle forms a connected subgraph. Researchers proved that, unlike in the original problem (which corresponds to the case of the complete graph in the extended setting), in the case of the goods-graph being a tree, allocations offering each agent a bundle of or exceeding her maximin share value always exist. Moreover, they can be found in polynomial time. We consider here the problem of maximin share allocations of goods on a cycle. Despite the simplicity of the graph, the problem turns out be significantly harder than its tree version. We present cases when maximin share allocations of goods on cycles exist and provide results on allocations guaranteeing each agent a certain portion of her maximin share. We also study algorithms for computing maximin share allocations of goods on cycles.


2013 ◽  
Vol 23 (06) ◽  
pp. 461-477 ◽  
Author(s):  
MINATI DE ◽  
GAUTAM K. DAS ◽  
PAZ CARMI ◽  
SUBHAS C. NANDY

In this paper, we consider constant factor approximation algorithms for a variant of the discrete piercing set problem for unit disks. Here a set of points P is given; the objective is to choose minimum number of points in P to pierce the unit disks centered at all the points in P. We first propose a very simple algorithm that produces 12-approximation result in O(n log n) time. Next, we improve the approximation factor to 4 and then to 3. The worst case running time of these algorithms are O(n8 log n) and O(n15 log n) respectively. Apart from the space required for storing the input, the extra work-space requirement for each of these algorithms is O(1). Finally, we propose a PTAS for the same problem. Given a positive integer k, it can produce a solution with performance ratio [Formula: see text] in nO(k) time.


Author(s):  
Hau Chan ◽  
Jing Chen ◽  
Bo Li ◽  
Xiaowei Wu

We study envy-free allocations of indivisible goods to agents in settings where each agent is unaware of the goods allocated to other agents. In particular, we propose the maximin aware (MMA) fairness measure, which guarantees that every agent, given the bundle allocated to her, is aware that she does not envy at least one other agent, even if she does not know how the other goods are distributed among other agents. We also introduce two of its relaxations, and discuss their egalitarian guarantee and existence. Finally, we present a polynomial-time algorithm, which computes an allocation that approximately satisfies MMA or its relaxations. Interestingly, the returned allocation is also 1/2-approximate EFX when all agents have sub- additive valuations, which improves the algorithm in [Plaut and Roughgarden, 2018].


Author(s):  
Rupert Freeman ◽  
Sujoy Sikdar ◽  
Rohit Vaish ◽  
Lirong Xia

In fair division, equitability dictates that each participant receives the same level of utility. In this work, we study equitable allocations of indivisible goods among agents with additive valuations. While prior work has studied (approximate) equitability in isolation, we consider equitability in conjunction with other well-studied notions of fairness and economic efficiency. We show that the Leximin algorithm produces an allocation that satisfies equitability up to any good and Pareto optimality. We also give a novel algorithm that guarantees Pareto optimality and equitability up to one good in pseudopolynomial time.  Our experiments on real-world preference data reveal that approximate envy-freeness, approximate equitability, and Pareto optimality can often be achieved simultaneously.


Author(s):  
Eshwar Ram Arunachaleswaran ◽  
Siddharth Barman ◽  
Nidhi Rathi

We study classic fair-division problems in a partial information setting. This paper respectively addresses fair division of rent, cake, and indivisible goods among agents with cardinal preferences. We will show that, for all of these settings and under appropriate valuations, a fair (or an approximately fair) division among n agents can be efficiently computed using only the valuations of n − 1 agents. The nth (secretive) agent can make an arbitrary selection after the division has been proposed and, irrespective of her choice, the computed division will admit an overall fair allocation.For the rent-division setting we prove that well-behaved utilities of n − 1 agents suffice to find a rent division among n rooms such that, for every possible room selection of the secretive agent, there exists an allocation (of the remaining n − 1 rooms among the n − 1 agents) which ensures overall envy freeness (fairness). We complement this existential result by developing a polynomial-time algorithm for the case of quasilinear utilities. In this partial information setting, we also develop efficient algorithms to compute allocations that are envy-free up to one good (EF1) and ε-approximate envy free. These two notions of fairness are applicable in the context of indivisible goods and divisible goods (cake cutting), respectively.One of the main technical contributions of this paper is the development of novel connections between different fairdivision paradigms, e.g., we use our existential results for envy-free rent-division to develop an efficient EF1 algorithm.


Sign in / Sign up

Export Citation Format

Share Document