scholarly journals An Attention-Based Graph Neural Network for Heterogeneous Structural Learning

2020 ◽  
Vol 34 (04) ◽  
pp. 4132-4139
Author(s):  
Huiting Hong ◽  
Hantao Guo ◽  
Yucheng Lin ◽  
Xiaoqing Yang ◽  
Zang Li ◽  
...  

In this paper, we focus on graph representation learning of heterogeneous information network (HIN), in which various types of vertices are connected by various types of relations. Most of the existing methods conducted on HIN revise homogeneous graph embedding models via meta-paths to learn low-dimensional vector space of HIN. In this paper, we propose a novel Heterogeneous Graph Structural Attention Neural Network (HetSANN) to directly encode structural information of HIN without meta-path and achieve more informative representations. With this method, domain experts will not be needed to design meta-path schemes and the heterogeneous information can be processed automatically by our proposed model. Specifically, we implicitly represent heterogeneous information using the following two methods: 1) we model the transformation between heterogeneous vertices through a projection in low-dimensional entity spaces; 2) afterwards, we apply the graph neural network to aggregate multi-relational information of projected neighborhood by means of attention mechanism. We also present three extensions of HetSANN, i.e., voices-sharing product attention for the pairwise relationships in HIN, cycle-consistency loss to retain the transformation between heterogeneous entity spaces, and multi-task learning with full use of information. The experiments conducted on three public datasets demonstrate that our proposed models achieve significant and consistent improvements compared to state-of-the-art solutions.

2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


2021 ◽  
pp. 107611
Author(s):  
Yaomin Chang ◽  
Chuan Chen ◽  
Weibo Hu ◽  
Zibin Zheng ◽  
Xiaocong Zhou ◽  
...  

2020 ◽  
Vol 34 (05) ◽  
pp. 7464-7471
Author(s):  
Deng Cai ◽  
Wai Lam

The dominant graph-to-sequence transduction models employ graph neural networks for graph representation learning, where the structural information is reflected by the receptive field of neurons. Unlike graph neural networks that restrict the information exchange between immediate neighborhood, we propose a new model, known as Graph Transformer, that uses explicit relation encoding and allows direct communication between two distant nodes. It provides a more efficient way for global graph structure modeling. Experiments on the applications of text generation from Abstract Meaning Representation (AMR) and syntax-based neural machine translation show the superiority of our proposed model. Specifically, our model achieves 27.4 BLEU on LDC2015E86 and 29.7 BLEU on LDC2017T10 for AMR-to-text generation, outperforming the state-of-the-art results by up to 2.2 points. On the syntax-based translation tasks, our model establishes new single-model state-of-the-art BLEU scores, 21.3 for English-to-German and 14.1 for English-to-Czech, improving over the existing best results, including ensembles, by over 1 BLEU.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2111
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Lun Hu ◽  
Zhen-Hao Guo ◽  
Lei Wang ◽  
...  

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1671
Author(s):  
Jibing Gong ◽  
Cheng Wang ◽  
Zhiyong Zhao ◽  
Xinghao Zhang

In MOOCs, generally speaking, curriculum designing, course selection, and knowledge concept recommendation are the three major steps that systematically instruct users to learn. This paper focuses on the knowledge concept recommendation in MOOCs, which recommends related topics to users to facilitate their online study. The existing approaches only consider the historical behaviors of users, but ignore various kinds of auxiliary information, which are also critical for user embedding. In addition, traditional recommendation models only consider the immediate user response to the recommended items, and do not explicitly consider the long-term interests of users. To deal with the above issues, this paper proposes AGMKRec, a novel reinforced concept recommendation model with a heterogeneous information network. We first clarify the concept recommendation in MOOCs as a reinforcement learning problem to offer a personalized and dynamic knowledge concept label list to users. To consider more auxiliary information of users, we construct a heterogeneous information network among users, courses, and concepts, and use a meta-path-based method which can automatically identify useful meta-paths and multi-hop connections to learn a new graph structure for learning effective node representations on a graph. Comprehensive experiments and analyses on a real-world dataset collected from XuetangX show that our proposed model outperforms some state-of-the-art methods.


Author(s):  
Fenxiao Chen ◽  
Yun-Cheng Wang ◽  
Bin Wang ◽  
C.-C. Jay Kuo

Abstract Research on graph representation learning has received great attention in recent years since most data in real-world applications come in the form of graphs. High-dimensional graph data are often in irregular forms. They are more difficult to analyze than image/video/audio data defined on regular lattices. Various graph embedding techniques have been developed to convert the raw graph data into a low-dimensional vector representation while preserving the intrinsic graph properties. In this review, we first explain the graph embedding task and its challenges. Next, we review a wide range of graph embedding techniques with insights. Then, we evaluate several stat-of-the-art methods against small and large data sets and compare their performance. Finally, potential applications and future directions are presented.


2020 ◽  
Vol 21 (S13) ◽  
Author(s):  
Renyi Zhou ◽  
Zhangli Lu ◽  
Huimin Luo ◽  
Ju Xiang ◽  
Min Zeng ◽  
...  

Abstract Background Drug discovery is known for the large amount of money and time it consumes and the high risk it takes. Drug repositioning has, therefore, become a popular approach to save time and cost by finding novel indications for approved drugs. In order to distinguish these novel indications accurately in a great many of latent associations between drugs and diseases, it is necessary to exploit abundant heterogeneous information about drugs and diseases. Results In this article, we propose a meta-path-based computational method called NEDD to predict novel associations between drugs and diseases using heterogeneous information. First, we construct a heterogeneous network as an undirected graph by integrating drug-drug similarity, disease-disease similarity, and known drug-disease associations. NEDD uses meta paths of different lengths to explicitly capture the indirect relationships, or high order proximity, within drugs and diseases, by which the low dimensional representation vectors of drugs and diseases are obtained. NEDD then uses a random forest classifier to predict novel associations between drugs and diseases. Conclusions The experiments on a gold standard dataset which contains 1933 validated drug–disease associations show that NEDD produces superior prediction results compared with the state-of-the-art approaches.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Nanxin Wang ◽  
Libin Yang ◽  
Yu Zheng ◽  
Xiaoyan Cai ◽  
Xin Mei ◽  
...  

Heterogeneous information network (HIN), which contains various types of nodes and links, has been applied in recommender systems. Although HIN-based recommendation approaches perform better than the traditional recommendation approaches, they still have the following problems: for example, meta-paths are manually selected, not automatically; meta-path representations are rarely explicitly learned; and the global and local information of each node in HIN has not been simultaneously explored. To solve the above deficiencies, we propose a tri-attention neural network (TANN) model for recommendation task. The proposed TANN model applies the stud genetic algorithm to automatically select meta-paths at first. Then, it learns global and local representations of each node, as well as the representations of meta-paths existing in HIN. After that, a tri-attention mechanism is proposed to enhance the mutual influence among users, items, and their related meta-paths. Finally, the encoded interaction information among the user, the item, and their related meta-paths, which contain more semantic information can be used for recommendation task. Extensive experiments on the Douban Movie, MovieLens, and Yelp datasets have demonstrated the outstanding performance of the proposed approach.


2021 ◽  
Author(s):  
Yingheng Wang ◽  
Yaosen Min ◽  
Erzhuo Shao ◽  
Ji Wu

ABSTRACTLearning generalizable, transferable, and robust representations for molecule data has always been a challenge. The recent success of contrastive learning (CL) for self-supervised graph representation learning provides a novel perspective to learn molecule representations. The most prevailing graph CL framework is to maximize the agreement of representations in different augmented graph views. However, existing graph CL frameworks usually adopt stochastic augmentations or schemes according to pre-defined rules on the input graph to obtain different graph views in various scales (e.g. node, edge, and subgraph), which may destroy topological semantemes and domain prior in molecule data, leading to suboptimal performance. Therefore, designing parameterized, learnable, and explainable augmentation is quite necessary for molecular graph contrastive learning. A well-designed parameterized augmentation scheme can preserve chemically meaningful structural information and intrinsically essential attributes for molecule graphs, which helps to learn representations that are insensitive to perturbation on unimportant atoms and bonds. In this paper, we propose a novel Molecular Graph Contrastive Learning with Parameterized Explainable Augmentations, MolCLE for brevity, that self-adaptively incorporates chemically significative information from both topological and semantic aspects of molecular graphs. Specifically, we apply deep neural networks to parameterize the augmentation process for both the molecular graph topology and atom attributes, to highlight contributive molecular substructures and recognize underlying chemical semantemes. Comprehensive experiments on a variety of real-world datasets demonstrate that our proposed method consistently outperforms compared baselines, which verifies the effectiveness of the proposed framework. Detailedly, our self-supervised MolCLE model surpasses many supervised counterparts, and meanwhile only uses hundreds of thousands of parameters to achieve comparative results against the state-of-the-art baseline, which has tens of millions of parameters. We also provide detailed case studies to validate the explainability of augmented graph views.CCS CONCEPTS• Mathematics of computing → Graph algorithms; • Applied computing → Bioinformatics; • Computing methodologies → Neural networks; Unsupervised learning.


Sign in / Sign up

Export Citation Format

Share Document