scholarly journals A Variational Perturbative Approach to Planning in Graph-Based Markov Decision Processes

2020 ◽  
Vol 34 (05) ◽  
pp. 7203-7210
Author(s):  
Dominik Linzner ◽  
Heinz Koeppl

Coordinating multiple interacting agents to achieve a common goal is a difficult task with huge applicability. This problem remains hard to solve, even when limiting interactions to be mediated via a static interaction-graph. We present a novel approximate solution method for multi-agent Markov decision problems on graphs, based on variational perturbation theory. We adopt the strategy of planning via inference, which has been explored in various prior works. We employ a non-trivial extension of a novel high-order variational method that allows for approximate inference in large networks and has been shown to surpass the accuracy of existing variational methods. To compare our method to two state-of-the-art methods for multi-agent planning on graphs, we apply the method different standard GMDP problems. We show that in cases, where the goal is encoded as a non-local cost function, our method performs well, while state-of-the-art methods approach the performance of random guess. In a final experiment, we demonstrate that our method brings significant improvement for synchronization tasks.

Author(s):  
Yanlin Han ◽  
Piotr Gmytrasiewicz

This paper introduces the IPOMDP-net, a neural network architecture for multi-agent planning under partial observability. It embeds an interactive partially observable Markov decision process (I-POMDP) model and a QMDP planning algorithm that solves the model in a neural network architecture. The IPOMDP-net is fully differentiable and allows for end-to-end training. In the learning phase, we train an IPOMDP-net on various fixed and randomly generated environments in a reinforcement learning setting, assuming observable reinforcements and unknown (randomly initialized) model functions. In the planning phase, we test the trained network on new, unseen variants of the environments under the planning setting, using the trained model to plan without reinforcements. Empirical results show that our model-based IPOMDP-net outperforms the other state-of-the-art modelfree network and generalizes better to larger, unseen environments. Our approach provides a general neural computing architecture for multi-agent planning using I-POMDPs. It suggests that, in a multi-agent setting, having a model of other agents benefits our decision-making, resulting in a policy of higher quality and better generalizability.


2020 ◽  
Vol 8 (1) ◽  
pp. 33-41
Author(s):  
Dr. S. Sarika ◽  

Phishing is a malicious and deliberate act of sending counterfeit messages or mimicking a webpage. The goal is either to steal sensitive credentials like login information and credit card details or to install malware on a victim’s machine. Browser-based cyber threats have become one of the biggest concerns in networked architectures. The most prolific form of browser attack is tabnabbing which happens in inactive browser tabs. In a tabnabbing attack, a fake page disguises itself as a genuine page to steal data. This paper presents a multi agent based tabnabbing detection technique. The method detects heuristic changes in a webpage when a tabnabbing attack happens and give a warning to the user. Experimental results show that the method performs better when compared with state of the art tabnabbing detection techniques.


2018 ◽  
Vol 7 (4) ◽  
pp. 603-622 ◽  
Author(s):  
Leonardo Gutiérrez-Gómez ◽  
Jean-Charles Delvenne

Abstract Several social, medical, engineering and biological challenges rely on discovering the functionality of networks from their structure and node metadata, when it is available. For example, in chemoinformatics one might want to detect whether a molecule is toxic based on structure and atomic types, or discover the research field of a scientific collaboration network. Existing techniques rely on counting or measuring structural patterns that are known to show large variations from network to network, such as the number of triangles, or the assortativity of node metadata. We introduce the concept of multi-hop assortativity, that captures the similarity of the nodes situated at the extremities of a randomly selected path of a given length. We show that multi-hop assortativity unifies various existing concepts and offers a versatile family of ‘fingerprints’ to characterize networks. These fingerprints allow in turn to recover the functionalities of a network, with the help of the machine learning toolbox. Our method is evaluated empirically on established social and chemoinformatic network benchmarks. Results reveal that our assortativity based features are competitive providing highly accurate results often outperforming state of the art methods for the network classification task.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Zhihao Wu ◽  
Baopeng Zhang ◽  
Tianchen Zhou ◽  
Yan Li ◽  
Jianping Fan

In this paper, we developed a practical approach for automatic detection of discrimination actions from social images. Firstly, an image set is established, in which various discrimination actions and relations are manually labeled. To the best of our knowledge, this is the first work to create a dataset for discrimination action recognition and relationship identification. Secondly, a practical approach is developed to achieve automatic detection and identification of discrimination actions and relationships from social images. Thirdly, the task of relationship identification is seamlessly integrated with the task of discrimination action recognition into one single network called the Co-operative Visual Translation Embedding++ network (CVTransE++). We also compared our proposed method with numerous state-of-the-art methods, and our experimental results demonstrated that our proposed methods can significantly outperform state-of-the-art approaches.


2021 ◽  
Vol 11 (8) ◽  
pp. 3636
Author(s):  
Faria Zarin Subah ◽  
Kaushik Deb ◽  
Pranab Kumar Dhar ◽  
Takeshi Koshiba

Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect ASD with a very limited dataset which provides high accuracy but results in poor generalization. To overcome this limitation and to enhance the performance of the automated autism diagnosis model, in this paper, we propose an ASD detection model using functional connectivity features of resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock 200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to perform the classification task. Simulation results indicate that the proposed model outperforms state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%, whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity, F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Iram Tazim Hoque ◽  
Nabil Ibtehaz ◽  
Saumitra Chakravarty ◽  
M. Saifur Rahman ◽  
M. Sohel Rahman

Abstract Background Segmentation of nuclei in cervical cytology pap smear images is a crucial stage in automated cervical cancer screening. The task itself is challenging due to the presence of cervical cells with spurious edges, overlapping cells, neutrophils, and artifacts. Methods After the initial preprocessing steps of adaptive thresholding, in our approach, the image passes through a convolution filter to filter out some noise. Then, contours from the resultant image are filtered by their distinctive contour properties followed by a nucleus size recovery procedure based on contour average intensity value. Results We evaluate our method on a public (benchmark) dataset collected from ISBI and also a private real dataset. The results show that our algorithm outperforms other state-of-the-art methods in nucleus segmentation on the ISBI dataset with a precision of 0.978 and recall of 0.933. A promising precision of 0.770 and a formidable recall of 0.886 on the private real dataset indicate that our algorithm can effectively detect and segment nuclei on real cervical cytology images. Tuning various parameters, the precision could be increased to as high as 0.949 with an acceptable decrease of recall to 0.759. Our method also managed an Aggregated Jaccard Index of 0.681 outperforming other state-of-the-art methods on the real dataset. Conclusion We have proposed a contour property-based approach for segmentation of nuclei. Our algorithm has several tunable parameters and is flexible enough to adapt to real practical scenarios and requirements.


2021 ◽  
Vol 37 (1-4) ◽  
pp. 1-30
Author(s):  
Vincenzo Agate ◽  
Alessandra De Paola ◽  
Giuseppe Lo Re ◽  
Marco Morana

Multi-agent distributed systems are characterized by autonomous entities that interact with each other to provide, and/or request, different kinds of services. In several contexts, especially when a reward is offered according to the quality of service, individual agents (or coordinated groups) may act in a selfish way. To prevent such behaviours, distributed Reputation Management Systems (RMSs) provide every agent with the capability of computing the reputation of the others according to direct past interactions, as well as indirect opinions reported by their neighbourhood. This last point introduces a weakness on gossiped information that makes RMSs vulnerable to malicious agents’ intent on disseminating false reputation values. Given the variety of application scenarios in which RMSs can be adopted, as well as the multitude of behaviours that agents can implement, designers need RMS evaluation tools that allow them to predict the robustness of the system to security attacks, before its actual deployment. To this aim, we present a simulation software for the vulnerability evaluation of RMSs and illustrate three case studies in which this tool was effectively used to model and assess state-of-the-art RMSs.


Author(s):  
Matteo Chiara ◽  
Federico Zambelli ◽  
Marco Antonio Tangaro ◽  
Pietro Mandreoli ◽  
David S Horner ◽  
...  

Abstract Summary While over 200 000 genomic sequences are currently available through dedicated repositories, ad hoc methods for the functional annotation of SARS-CoV-2 genomes do not harness all currently available resources for the annotation of functionally relevant genomic sites. Here, we present CorGAT, a novel tool for the functional annotation of SARS-CoV-2 genomic variants. By comparisons with other state of the art methods we demonstrate that, by providing a more comprehensive and rich annotation, our method can facilitate the identification of evolutionary patterns in the genome of SARS-CoV-2. Availabilityand implementation Galaxy   http://corgat.cloud.ba.infn.it/galaxy; software: https://github.com/matteo14c/CorGAT/tree/Revision_V1; docker: https://hub.docker.com/r/laniakeacloud/galaxy_corgat. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Elvis Ahmetović ◽  
Zdravko Kravanja ◽  
Nidret Ibrić ◽  
Ignacio E. Grossmann ◽  
Luciana E. Savulescu

Sign in / Sign up

Export Citation Format

Share Document