scholarly journals SPSTracker: Sub-Peak Suppression of Response Map for Robust Object Tracking

2020 ◽  
Vol 34 (07) ◽  
pp. 10989-10996
Author(s):  
Qintao Hu ◽  
Lijun Zhou ◽  
Xiaoxiao Wang ◽  
Yao Mao ◽  
Jianlin Zhang ◽  
...  

Modern visual trackers usually construct online learning models under the assumption that the feature response has a Gaussian distribution with target-centered peak response. Nevertheless, such an assumption is implausible when there is progressive interference from other targets and/or background noise, which produce sub-peaks on the tracking response map and cause model drift. In this paper, we propose a rectified online learning approach for sub-peak response suppression and peak response enforcement and target at handling progressive interference in a systematic way. Our approach, referred to as SPSTracker, applies simple-yet-efficient Peak Response Pooling (PRP) to aggregate and align discriminative features, as well as leveraging a Boundary Response Truncation (BRT) to reduce the variance of feature response. By fusing with multi-scale features, SPSTracker aggregates the response distribution of multiple sub-peaks to a single maximum peak, which enforces the discriminative capability of features for robust object tracking. Experiments on the OTB, NFS and VOT2018 benchmarks demonstrate that SPSTrack outperforms the state-of-the-art real-time trackers with significant margins1

2020 ◽  
Vol 34 (07) ◽  
pp. 11037-11044
Author(s):  
Lianghua Huang ◽  
Xin Zhao ◽  
Kaiqi Huang

A key capability of a long-term tracker is to search for targets in very large areas (typically the entire image) to handle possible target absences or tracking failures. However, currently there is a lack of such a strong baseline for global instance search. In this work, we aim to bridge this gap. Specifically, we propose GlobalTrack, a pure global instance search based tracker that makes no assumption on the temporal consistency of the target's positions and scales. GlobalTrack is developed based on two-stage object detectors, and it is able to perform full-image and multi-scale search of arbitrary instances with only a single query as the guide. We further propose a cross-query loss to improve the robustness of our approach against distractors. With no online learning, no punishment on position or scale changes, no scale smoothing and no trajectory refinement, our pure global instance search based tracker achieves comparable, sometimes much better performance on four large-scale tracking benchmarks (i.e., 52.1% AUC on LaSOT, 63.8% success rate on TLP, 60.3% MaxGM on OxUvA and 75.4% normalized precision on TrackingNet), compared to state-of-the-art approaches that typically require complex post-processing. More importantly, our tracker runs without cumulative errors, i.e., any type of temporary tracking failures will not affect its performance on future frames, making it ideal for long-term tracking. We hope this work will be a strong baseline for long-term tracking and will stimulate future works in this area.


2015 ◽  
Vol 4 (2) ◽  
pp. 20-28
Author(s):  
Vinayagam Mariappan ◽  
Hyung-O Kim ◽  
Minwoo Lee ◽  
Juphil Cho ◽  
Jaesang Cha

Author(s):  
Megha Chhabra ◽  
Manoj Kumar Shukla ◽  
Kiran Kumar Ravulakollu

: Latent fingerprints are unintentional finger skin impressions left as ridge patterns at crime scenes. A major challenge in latent fingerprint forensics is the poor quality of the lifted image from the crime scene. Forensics investigators are in permanent search of novel outbreaks of the effective technologies to capture and process low quality image. The accuracy of the results depends upon the quality of the image captured in the beginning, metrics used to assess the quality and thereafter level of enhancement required. The low quality of the image collected by low quality scanners, unstructured background noise, poor ridge quality, overlapping structured noise result in detection of false minutiae and hence reduce the recognition rate. Traditionally, Image segmentation and enhancement is partially done manually using help of highly skilled experts. Using automated systems for this work, differently challenging quality of images can be investigated faster. This survey amplifies the comparative study of various segmentation techniques available for latent fingerprint forensics.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


Author(s):  
Sebastien Bubeck ◽  
Nikhil R. Devanur ◽  
Zhiyi Huang ◽  
Rad Niazadeh

Author(s):  
Wei Huang ◽  
Xiaoshu Zhou ◽  
Mingchao Dong ◽  
Huaiyu Xu

AbstractRobust and high-performance visual multi-object tracking is a big challenge in computer vision, especially in a drone scenario. In this paper, an online Multi-Object Tracking (MOT) approach in the UAV system is proposed to handle small target detections and class imbalance challenges, which integrates the merits of deep high-resolution representation network and data association method in a unified framework. Specifically, while applying tracking-by-detection architecture to our tracking framework, a Hierarchical Deep High-resolution network (HDHNet) is proposed, which encourages the model to handle different types and scales of targets, and extract more effective and comprehensive features during online learning. After that, the extracted features are fed into different prediction networks for interesting targets recognition. Besides, an adjustable fusion loss function is proposed by combining focal loss and GIoU loss to solve the problems of class imbalance and hard samples. During the tracking process, these detection results are applied to an improved DeepSORT MOT algorithm in each frame, which is available to make full use of the target appearance features to match one by one on a practical basis. The experimental results on the VisDrone2019 MOT benchmark show that the proposed UAV MOT system achieves the highest accuracy and the best robustness compared with state-of-the-art methods.


2021 ◽  
Vol 13 (7) ◽  
pp. 1243
Author(s):  
Wenxin Yin ◽  
Wenhui Diao ◽  
Peijin Wang ◽  
Xin Gao ◽  
Ya Li ◽  
...  

The detection of Thermal Power Plants (TPPs) is a meaningful task for remote sensing image interpretation. It is a challenging task, because as facility objects TPPs are composed of various distinctive and irregular components. In this paper, we propose a novel end-to-end detection framework for TPPs based on deep convolutional neural networks. Specifically, based on the RetinaNet one-stage detector, a context attention multi-scale feature extraction network is proposed to fuse global spatial attention to strengthen the ability in representing irregular objects. In addition, we design a part-based attention module to adapt to TPPs containing distinctive components. Experiments show that the proposed method outperforms the state-of-the-art methods and can achieve 68.15% mean average precision.


SAGE Open ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 215824402097983
Author(s):  
Abdullah Yasin Gündüz ◽  
Buket Akkoyunlu

The success of the flipped learning approach is directly related to the preparation process through the online learning environment. It is clear that the desired level of academic achievement cannot be reached if the students come to class without completing their assignments. In this study, we investigated the effect of the use of gamification in the online environment of flipped learning to determine whether it will increase interaction data, participation, and achievement. We used a mixed-methods sequential explanatory design, which implies collecting and analyzing quantitative and then qualitative data. In the online learning environment of the experimental group, we used the gamification. However, participants in the control group could not access the game components. According to the findings, the experimental group had higher scores in terms of interaction data, participation, and achievement compared with the control group. Students with low participation can be encouraged to do online activities with gamification techniques.


Sign in / Sign up

Export Citation Format

Share Document