scholarly journals Local Consistency and SAT-Solvers

2012 ◽  
Vol 43 ◽  
pp. 329-351 ◽  
Author(s):  
P. Jeavons ◽  
J. Petke

Local consistency techniques such as k-consistency are a key component of specialised solvers for constraint satisfaction problems. In this paper we show that the power of using k-consistency techniques on a constraint satisfaction problem is precisely captured by using a particular inference rule, which we call negative-hyper-resolution, on the standard direct encoding of the problem into Boolean clauses. We also show that current clause-learning SAT-solvers will discover in expected polynomial time any inconsistency that can be deduced from a given set of clauses using negative-hyper-resolvents of a fixed size. We combine these two results to show that, without being explicitly designed to do so, current clause-learning SAT-solvers efficiently simulate k-consistency techniques, for all fixed values of k. We then give some experimental results to show that this feature allows clause-learning SAT-solvers to efficiently solve certain families of constraint problems which are challenging for conventional constraint-programming solvers.


2001 ◽  
Vol 1 (6) ◽  
pp. 713-750 ◽  
Author(s):  
KRZYSZTOF R. APT ◽  
ERIC MONFROY

We study here a natural situation when constraint programming can be entirely reduced to rule-based programming. To this end we explain first how one can compute on constraint satisfaction problems using rules represented by simple first-order formulas. Then we consider constraint satisfaction problems that are based on predefined, explicitly given constraints. To solve them we first derive rules from these explicitly given constraints and limit the computation process to a repeated application of these rules, combined with labeling. We consider two types of rule here. The first type, that we call equality rules, leads to a new notion of local consistency, called rule consistency that turns out to be weaker than arc consistency for constraints of arbitrary arity (called hyper-arc consistency in Marriott & Stuckey (1998)). For Boolean constraints rule consistency coincides with the closure under the well-known propagation rules for Boolean constraints. The second type of rules, that we call membership rules, yields a rule-based characterization of arc consistency. To show feasibility of this rule-based approach to constraint programming, we show how both types of rules can be automatically generated, as CHR rules of Frühwirth (1995). This yields an implementation of this approach to programming by means of constraint logic programming. We illustrate the usefulness of this approach to constraint programming by discussing various examples, including Boolean constraints, two typical examples of many valued logics, constraints dealing with Waltz's language for describing polyhedral scenes, and Allen's qualitative approach to temporal logic.



Author(s):  
Marlene Arangú ◽  
Miguel Salido

A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems Constraint programming is a powerful software technology for solving numerous real-life problems. Many of these problems can be modeled as Constraint Satisfaction Problems (CSPs) and solved using constraint programming techniques. However, solving a CSP is NP-complete so filtering techniques to reduce the search space are still necessary. Arc-consistency algorithms are widely used to prune the search space. The concept of arc-consistency is bidirectional, i.e., it must be ensured in both directions of the constraint (direct and inverse constraints). Two of the most well-known and frequently used arc-consistency algorithms for filtering CSPs are AC3 and AC4. These algorithms repeatedly carry out revisions and require support checks for identifying and deleting all unsupported values from the domains. Nevertheless, many revisions are ineffective, i.e., they cannot delete any value and consume a lot of checks and time. In this paper, we present AC4-OP, an optimized version of AC4 that manages the binary and non-normalized constraints in only one direction, storing the inverse founded supports for their later evaluation. Thus, it reduces the propagation phase avoiding unnecessary or ineffective checking. The use of AC4-OP reduces the number of constraint checks by 50% while pruning the same search space as AC4. The evaluation section shows the improvement of AC4-OP over AC4, AC6 and AC7 in random and non-normalized instances.



2014 ◽  
Vol 61 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Libor Barto ◽  
Marcin Kozik


2008 ◽  
Vol 17 (05) ◽  
pp. 781-802 ◽  
Author(s):  
KOSTAS STERGIOU

Domain filtering local consistencies, such as inverse consistencies, that only delete values and do not add new constraints are particularly useful in Constraint Programming. Although many such consistencies for binary constraints have been proposed and evaluated, the situation with non-binary constraints is quite different. Only very recently have domain filtering consistencies stronger than GAC started to attract interest. Following this line of research, we define a number of strong domain filtering consistencies for non-binary constraints and theoretically compare their pruning power. We prove that three of these consistencies are equivalent to maxRPC in binary CSPs while another is equivalent to PIC. We also describe a generic algorithm for domain filtering consistencies in non-binary CSPs. We show how this algorithm can be instantiated to enforce some of the proposed consistencies and analyze the worst-case complexities of the resulting algorithms. Finally, we make a preliminary empirical study.



2021 ◽  
Author(s):  
Muhanda Stella Mbaka Muzalal

Constraint satisfaction problems present a general framework for studying a large class of algorithmic problems such as satisfaction of Boolean formulas, solving systems of equations over finite fields, graph colourings, as well as various applied problems in artificial intelligence (scheduling, allocation of cell phone frequencies, among others.) CSP (Constraint Satisfaction Problems) bring together graph theory, complexity theory and universal algebra. It is a well known result, due to Feder and Vardi, that any constraint satisfaction problem over a finite relational structure can be reduced to the homomorphism problem for a finite oriented graph. Until recently, it was not known whether this reduction preserves the type of the algorithm which solves the original constraint satisfaction problem, so that the same algorithm solves the corresponding digraph homomorphism problem. We look at how a recent construction due to Bulin, Deli´c, Jackson, and Niven can be used to show that the polynomial solvability of a constraint satisfaction problem using Datalog, a programming language which is a weaker version of Prolog, translates from arbitrary relational structures to digraphs.



2019 ◽  
Author(s):  
Kamelia Reshadi

This thesis concerns repetitive structures in words. More precisely, it contributes to studying appearance and absence of such repetitions in words. In the first and major part of this thesis, we study avoidability of unary patterns with permutations. The second part of this thesis deals with modeling and solving several avoidability problems as constraint satisfaction problems, using the framework of MiniZinc. Solving avoidability problems like the one mentioned in the past paragraph required, the construction, via a computer program, of a very long word that does not contain any word that matches a given pattern. This gave us the idea of using SAT solvers. Representing the problem-based SAT solvers seemed to be a standardised, and usually very optimised approach to formulate and solve the well-known avoidability problems like avoidability of formulas with reversal and avoidability of patterns in the abelian sense too. The final part is concerned with a variation on a classical avoidance problem from combinatorics on words. Considering the concatenation of i different factors of the word w, pexp_i(w) is the supremum of powers that can be constructed by concatenation of such factors, and RTi(k) is then the infimum of pexp_i(w). Again, by checking infinite ternary words that satisfy some properties, we calculate the value RT_i(3) for even and odd values of i.



2019 ◽  
Vol 19 (02) ◽  
pp. 1950010 ◽  
Author(s):  
Libor Barto ◽  
Michael Kompatscher ◽  
Miroslav Olšák ◽  
Van Pham Trung ◽  
Michael Pinsker

There exist two conjectures for constraint satisfaction problems (CSPs) of reducts of finitely bounded homogeneous structures: the first one states that tractability of the CSP of such a structure is, when the structure is a model-complete core, equivalent to its polymorphism clone satisfying a certain nontrivial linear identity modulo outer embeddings. The second conjecture, challenging the approach via model-complete cores by reflections, states that tractability is equivalent to the linear identities (without outer embeddings) satisfied by its polymorphisms clone, together with the natural uniformity on it, being nontrivial. We prove that the identities satisfied in the polymorphism clone of a structure allow for conclusions about the orbit growth of its automorphism group, and apply this to show that the two conjectures are equivalent. We contrast this with a counterexample showing that [Formula: see text]-categoricity alone is insufficient to imply the equivalence of the two conditions above in a model-complete core. Taking another approach, we then show how the Ramsey property of a homogeneous structure can be utilized for obtaining a similar equivalence under different conditions. We then prove that any polymorphism of sufficiently large arity which is totally symmetric modulo outer embeddings of a finitely bounded structure can be turned into a nontrivial system of linear identities, and obtain nontrivial linear identities for all tractable cases of reducts of the rational order, the random graph, and the random poset. Finally, we provide a new and short proof, in the language of monoids, of the theorem stating that every [Formula: see text]-categorical structure is homomorphically equivalent to a model-complete core.



Author(s):  
Alexsander Andrade de Melo ◽  
Mateus De Oliveira Oliveira

A fundamental drawback that arises when one is faced with the task of deterministically certifying solutions to computational problems in PSPACE is the fact that witnesses may have superpolynomial size, assuming that NP is not equal to PSPACE. Therefore, the complexity of such a deterministic verifier may already be super-polynomially lower-bounded by the size of a witness. In this work, we introduce a new symbolic framework to address this drawback. More precisely, we introduce a PSPACE-hard notion of symbolic constraint satisfaction problem where both instances and solutions for these instances are implicitly represented by ordered decision diagrams (i.e. read-once, oblivious, branching programs). Our main result states that given an ordered decision diagram D of length k and width w specifying a CSP instance, one can determine in time f(w,w')*k whether there is an ODD of width at most w' encoding a solution for this instance. Intuitively, while the parameter w quantifies the complexity of the instance, the parameter w' quantifies the complexity of a prospective solution. We show that CSPs of constant width can be used to formalize natural PSPACE hard problems, such as reachability of configurations for Turing machines working in nondeterministic linear space. For such problems, our main result immediately yields an algorithm that determines the existence of solutions of width w in time g(w)*n, where g:N->N is a suitable computable function, and n is the size of the input.



2021 ◽  
Author(s):  
Mehdi Bidar ◽  
Malek Mouhoub

Abstract Combinatorial applications such as configuration, transportation and resource allocation, often operate under highly dynamic and unpredictable environments. In this regard, one of the main challenges is to maintain a consistent solution anytime constraints are (dynamically) added. While many solvers have been developed to tackle these applications, they often work under idealized assumptions of environmental stability. In order to address limitation, we propose a methodology, relying on nature-inspired techniques, for solving constraint problems when constraints are added dynamically. The choice for nature-inspired techniques is motivated by the fact that these are iterative algorithms, capable of maintaining a set of promising solutions, at each iteration. Our methodology takes advantage of these two properties, as follows. We first solve the initial constraint problem and save the final state (and the related population) after obtaining a consistent solution. This saved context will then be used as a resume point for finding, in an incremental manner, new solutions to subsequent variants of the problem, anytime new constraints are added. More precisely, once a solution is found, we resume from the current state to search for a new one (if the old solution is no longer feasible), when new constraints are added. This can be seen as an optimization problem where we look for a new feasible solution satisfying old and new constraints, while minimizing the differences with the solution of the previous problem, in sequence. This latter objective ensures to find the least disruptive solution, as this is very important in many applications including scheduling, planning and timetabling. Following on our proposed methodology, we have developed the dynamic variant of several nature-inspired techniques to tackle dynamic constraint problems. Constraint problems are represented using the well-known Constraint Satisfaction Problem (CSP) paradigm. Dealing with constraint additions in a dynamic environment can then be expressed as a series of static CSPs, each resulting from a change in the previous one by adding new constraints. This sequence of CSPs is called the Dynamic CSP (DCSP). To assess the performance of our proposed methodology, we conducted several experiments on randomly generated DCSP instances, following the RB model. The results of the experiments are reported and discussed.



2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Pierre-Alain Yvars ◽  
Laurent Zimmer

We test the relevance of a model-based approach for sizing and optimizing complex systems. Classically a model-based approach is characterized by a clear partition between the problem description and the solving process. In the case of a design problem, we show that the sizing task could be systematically characterized and therefore could lead to a declarative model combining both system description and design requirements. Once translated into a constraint satisfaction problem, the resulting model can be solved with interval constraint programming methods and algorithms. Our first contribution to this approach is to precisely characterize the sizing task in design. The resulting terminology enables us to easily and systematically express the problem as a constraint satisfaction problem (CSP) which combines in the same model the system description and the design requirements. We have tested the approach on the optimal sizing problem of a power transmission system. Previous authors have described this scalable case study. They provide a mathematical formulation of the problem and solve it with an evolutionary algorithm. Starting from their description, we apply our methodology to model the problem as a CSP and then solve it with interval constraint programming algorithms. Our solutions are more adequate both in computational time and in optimization results than those published in the literature on the same problem. Moreover the declarative nature of constraint programming makes modifications or extensions easier than with evolutionary programming. The explanation of these results is our second contribution to the approach. However some important modelling issues remain to address in order to capture more and more complex system specifications. Further research is presented at the end of this paper.



Sign in / Sign up

Export Citation Format

Share Document