Genetics and Reproduction of Common (Phragmites australis) and Giant Reed (Arundo donax)

2010 ◽  
Vol 3 (4) ◽  
pp. 495-505 ◽  
Author(s):  
Kristin Saltonstall ◽  
Adam Lambert ◽  
Laura A. Meyerson

AbstractGenetic diversity and reproductive characteristics may play an important role in the invasion process. Here, we review the genetic structure and reproductive characteristics of common reed and giant reed, two of the most aggressive, large-statured invasive grasses in North America. Common reed reproduces both sexually and asexually and has a complex population structure, characterized by three subspecies with overlapping distributions; of which, one is introduced, one native, and the third is of unknown origins. These three subspecies show varying levels of genetic diversity, with introduced common reed having high levels of nuclear diversity, indicating that multiple introductions have likely occurred. In contrast, giant reed has low genetic diversity and appears to reproduce solely via asexual fragments yet is highly aggressive in parts of its introduced range. Both species are well-adapted for growth in human-dominated landscapes, which is presumably facilitated by their rhizomatous growth habit.

BMC Genetics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Jenny Hagenblad ◽  
Jennifer Hülskötter ◽  
Kamal Prasad Acharya ◽  
Jörg Brunet ◽  
Olivier Chabrerie ◽  
...  

Author(s):  
Gautam Shirsekar ◽  
Jane Devos ◽  
Sergio M Latorre ◽  
Andreas Blaha ◽  
Maique Queiroz Dias ◽  
...  

Abstract Large-scale movement of organisms across their habitable range, or migration, is an important evolutionary process that can shape genetic diversity and influence the adaptive spread of alleles. Although human migrations have been studied in great detail with modern and ancient genomes, recent anthropogenic influence on reducing the biogeographical constraints on the migration of nonnative species has presented opportunities in several study systems to ask the questions about how repeated introductions shape genetic diversity in the introduced range. We present an extensive overview of population structure of North American Arabidopsis thaliana by studying a set of 500 whole-genome sequenced and over 2,800 RAD-seq genotyped individuals in the context of global diversity represented by Afro-Eurasian genomes. We use methods based on haplotype and rare-allele sharing as well as phylogenetic modeling to identify likely sources of introductions of extant N. American A. thaliana from the native range in Africa and Eurasia. We find evidence of admixture among the introduced lineages having increased haplotype diversity and reduced mutational load. We also detect signals of selection in immune-system-related genes that may impart qualitative disease resistance to pathogens of bacterial and oomycete origin. We conclude that multiple introductions to a nonnative range can rapidly enhance the adaptive potential of a colonizing species by increasing haplotypic diversity through admixture. Our results lay the foundation for further investigations into the functional significance of admixture.


2013 ◽  
Vol 6 (3) ◽  
pp. 328-338 ◽  
Author(s):  
Daniel Tarin ◽  
Alan E. Pepper ◽  
John A. Goolsby ◽  
Patrick J. Moran ◽  
Alberto Contreras Arquieta ◽  
...  

AbstractGiant reed (Arundo donax) is an invasive weed that is native to the Old World. Tens of thousands of hectares of riparian habitat in the Rio Grande Basin (RGB) in Texas and Mexico have been heavily affected by invasions of Arundo. Additionally, many other watersheds across the southwestern United States have also been affected. Giant reed is being targeted for biological control because it displaces native vegetation and consumes water that could potentially be used for agricultural and municipal purposes, especially in areas with limited access to water. Finding the best-adapted insects for biological control involves locating the origin(s) of this plant. To narrow down the proximal source(s) of invasion of giant reed in the RGB, 10 microsatellite markers were developed. An analysis of 203 Old World and 159 North American plants, with an emphasis on the RGB, indicated a reduction in the allelic diversity in the introduced range compared with the Old World. Clonal assignment, neighbor joining, principal coordinates analyses, and STRUCTURE analyses were consistent and implied multiple introductions in North America, with one (likely clonal) lineage responsible for the invasion of the RGB, northern Mexico, and other parts of the southwestern United States. Although no identical matches with the RGB lineage were found in the Old World, several close matches were found on the Mediterranean coast of Spain.


2018 ◽  
Author(s):  
Toni I. Gossmann​ ◽  
Achchuthan Shanmugasundram​ ◽  
Stefan Börno ◽  
Ludovic Duvaux ◽  
Christophe Lemaire​ ◽  
...  

2013 ◽  
Vol 103 (11) ◽  
pp. 1188-1197 ◽  
Author(s):  
Mona A. Kassem ◽  
Miguel Juarez ◽  
Pedro Gómez ◽  
Carmen M. Mengual ◽  
Raquel N. Sempere ◽  
...  

The genetic variability of a Cucurbit aphid-borne yellows virus (CABYV) (genus Polerovirus, family Luteoviridae) population was evaluated by determining the nucleotide sequences of two genomic regions of CABYV isolates collected in open-field melon and squash crops during three consecutive years in Murcia (southeastern Spain). A phylogenetic analysis showed the existence of two major clades. The sequences did not cluster according to host, year, or locality of collection, and nucleotide similarities among isolates were 97 to 100 and 94 to 97% within and between clades, respectively. The ratio of nonsynonymous to synonymous nucleotide substitutions reflected that all open reading frames have been under purifying selection. Estimates of the population's genetic diversity were of the same magnitude as those previously reported for other plant virus populations sampled at larger spatial and temporal scales, suggesting either the presence of CABYV in the surveyed area long before it was first described, multiple introductions, or a particularly rapid diversification. We also determined the full-length sequences of three isolates, identifying the occurrence and location of recombination events along the CABYV genome. Furthermore, our field surveys indicated that Aphis gossypii was the major vector species of CABYV and the most abundant aphid species colonizing melon fields in the Murcia (Spain) region. Our surveys also suggested the importance of the weed species Ecballium elaterium as an alternative host and potential virus reservoir.


Sign in / Sign up

Export Citation Format

Share Document