scholarly journals Patterns of Genetic Diversity in the Globally Invasive Species Wild Parsnip (Pastinaca sativa)

2015 ◽  
Vol 8 (4) ◽  
pp. 415-429 ◽  
Author(s):  
Tania Jogesh ◽  
Rhiannon Peery ◽  
Stephen R. Downie ◽  
May R. Berenbaum

AbstractWild parsnip is an invasive species with a global distribution in temperate climates. Parsnips are native to Eurasia and have been cultivated for more than five centuries. It is unclear whether the global invasion of this species is a consequence of escape from cultivation or the accidental introduction of a Eurasian wild subspecies. In this study, we used nuclear ribosomal DNA internal transcribed spacer (ITS) and chloroplast DNA (cpDNA) markers to evaluate the genetic structure of wild parsnip in its native range (Europe) and in three distinct geographic regions where it is considered invasive: eastern North America, western North America, and New Zealand. We also compared wild and cultivated parsnips to determine whether they are genetically distinct. From 112 individuals, we recovered 14 ITS and 27 cpDNA haplotypes. One ITS haplotype was widespread; few haplotypes were rare singletons. In contrast, at least two lineages of cpDNA haplotypes were recovered, with several novel haplotypes restricted to Europe. Cultivated parsnips were not genetically distinct from wild parsnips, and numerous wild parsnip populations shared haplotypes with cultivars. High genetic diversity was recovered in all three regions, suggesting multiple introductions.

2016 ◽  
Vol 17 (1) ◽  
pp. 292 ◽  
Author(s):  
M. J. RAKOVIĆ ◽  
M. B. RAKOVIĆ ◽  
A. M. PETROVIĆ ◽  
N. Z. POPOVIĆ ◽  
J. A. ĐUKNIĆ ◽  
...  

The genus Physa (= Physella) includes the most abundant and diverse freshwater gastropods native to North America. Due to their invasive nature many species occur throughout the world. The most abundant species, Physa acuta, has been introduced to Europe, Africa, Asia and Australia by human commerce and migrating birds. This species is widely distributed throughout Serbia. The aim of this study was to explore the genetic diversity of P. acuta from Serbia, and to determine the evolutionary relationships among native Physidae populations from North America, Mexico and Cuba and populations from Europe using sequences of the mitochondrial 16S rDNA gene. The ML (Maximum Likelihood) tree revealed two clades within Physidae, and two clades that correspond to the families Planorbidae and Lymnaeidae. In the Physidae clade there are two separate clades: one includes the species Physa spelunca, and the second includes samples of P. acuta. We determined three different haplotypes within specimens from Serbia. One haplotype is genetically closest to species Physa heterostrofa (synonym of P. acuta) from Philadelphia, while the other two are very close to P. acuta specimens from New Mexico. Together with other samples our findings corroborate the notion that we are dealing with one panmictic population of P. acuta and not with several separate species, despite the high genetic diversity between and among the populations. Our results indicate that in the same population in Serbia, there is high genetic distance between samples. Despite the small number of analyzed samples, our findings point to multiple introductions of P. acuta from different locations in America.


2021 ◽  
Vol 7 (8) ◽  
pp. 634
Author(s):  
Kalev Adamson ◽  
Marili Laas ◽  
Kathrin Blumenstein ◽  
Johanna Busskamp ◽  
Gitta J. Langer ◽  
...  

Diplodia sapinea is a cosmopolitan endophyte and opportunistic pathogen having occurred on several conifer species in Europe for at least 200 years. In Europe, disease outbreaks have increased on several Pinus spp. in the last few decades. In this study, the genetic structure of the European and western Asian D. sapinea population were investigated using 13 microsatellite markers. In total, 425 isolates from 15 countries were analysed. A high clonal fraction and low genetic distance between most subpopulations was found. One single haplotype dominates the European population, being represented by 45.3% of all isolates and found in nearly all investigated countries. Three genetically distinct subpopulations were found: Central/North European, Italian and Georgian. The recently detected subpopulations of D. sapinea in northern Europe (Estonia) share several haplotypes with the German subpopulation. The northern European subpopulations (Latvia, Estonia and Finland) show relatively high genetic diversity compared to those in central Europe suggesting either that the fungus has existed in the North in an asymptomatic/endophytic mode for a long time or that it has spread recently by multiple introductions. Considerable genetic diversity was found even among isolates of a single tree as 16 isolates from a single tree resulted in lower clonal fraction index than most subpopulations in Europe, which might reflect cryptic sexual proliferation. According to currently published allelic patterns, D. sapinea most likely originates from North America or from some unsampled population in Asia or central America. In order to enable the detection of endophytic or latent infections of planting stock by D. sapinea, new species-specific PCR primers (DiSapi-F and Diplo-R) were designed. During the search for Diplodia isolates across the world for species specific primer development, we identified D. africana in California, USA, and in the Canary Islands, which are the first records of this species in North America and in Spain.


2019 ◽  
Vol 97 (4) ◽  
pp. 392-398 ◽  
Author(s):  
K.K.S. Layton ◽  
C.P.K. Warne ◽  
A. Nicolai ◽  
A. Ansart ◽  
J.R. deWaard

Global identification and monitoring programs for invasive species aim to reduce imminent impacts to biodiversity, ecosystem services, agriculture, and human health. This study employs a 658 base pair fragment of the cytochrome c oxidase subunit I (COI) gene to identify and categorize clades of the banded grove snail (Cepaea nemoralis (Linnaeus, 1758)) from native (European) and introduced (North American) ranges using a maximum-likelihood phylogeny and haplotype networks. This work corroborates the existence of eight clades within C. nemoralis and further identified three clades that were common to both Europe and North America (A, D, O). Clades A and D were found in eastern Canada, Ontario (Canada), and British Columbia (Canada), whereas clade O was restricted to Ontario, possibly introduced from Poland or central Europe. Haplotype networks suggest clade A was introduced from northern Europe, whereas clade D was introduced from western and central Europe. Networks contained many private haplotypes and a lack of haplotype sharing, suggesting strong genetic structure in this system, possibly resulting from reduced dispersal in this species. This study describes the contemporary distribution of C. nemoralis in Canada and demonstrates the efficacy of DNA barcoding for monitoring the spread of invasive species, warranting its widespread adoption in management policies.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Yanwen Deng ◽  
Tingting Liu ◽  
Yuqing Xie ◽  
Yaqing Wei ◽  
Zicai Xie ◽  
...  

Research Highlights: This study is the first to examine the genetic diversity of Michelia shiluensis (Magnoliaceae). High genetic diversity and low differentiation were detected in this species. Based on these results, we discuss feasible protection measures to provide a basis for the conservation and utilization of M. shiluensis. Background and Objectives: Michelia shiluensis is distributed in Hainan and Guangdong province, China. Due to human disturbance, the population has decreased sharply, and there is thus an urgent need to evaluate genetic variation within this species in order to identify an optimal conservation strategy. Materials and Methods: In this study, we used eight nuclear single sequence repeat (nSSR) markers and two chloroplast DNA (cpDNA) markers to assess the genetic diversity, population structure, and dynamics of 78 samples collected from six populations. Results: The results showed that the average observed heterozygosity (Ho), expected heterozygosity (He), and percentage of polymorphic loci (PPL) from nSSR markers in each population of M. shiluensis were 0.686, 0.718, and 97.92%, respectively. For cpDNA markers, the overall haplotype diversity (Hd) was 0.674, and the nucleotide diversity was 0.220. Analysis of markers showed that the genetic variation between populations was much lower based on nSSR than on cpDNA (10.18% and 77.56%, respectively, based on an analysis of molecular variance (AMOVA)). Analysis of the population structure based on the two markers shows that one of the populations (DL) is very different from the other five. Conclusions: High genetic diversity and low population differentiation of M. shiluensis might be the result of rich ancestral genetic variation. The current decline in population may therefore be due to human disturbance rather than to inbreeding or genetic drift. Management and conservation strategies should focus on maintaining the genetic diversity in situ, and on the cultivation of seedlings ex-situ for transplanting back to their original habitat.


Biologia ◽  
2011 ◽  
Vol 66 (1) ◽  
Author(s):  
Marko Sabovljević ◽  
Jan-Peter Frahm

AbstractPost-glacial survival, potential migration routes, genetic diversity and phylogeography of the boreal moss species Rhytidium rugosum have been studied. This species is considered to be one of glacial relics of the wide but scattered Holarctic range. According to molecular data sampling from the selected European, American and Asian populations high genetic diversity of this species is present, even if this species is mostly sterile and produced sex organs extremely rarely and spread mostly asexually. Analysing the internal transcribed spacer (ITS) of the nuclear ribosomal DNA, it can be concluded that the populations of this species survived glaciations in various places in Europe and settled and re-settled present range space in various times from various refuges.


Weed Science ◽  
2010 ◽  
Vol 58 (4) ◽  
pp. 387-394 ◽  
Author(s):  
Tracey A. Bodo Slotta ◽  
Michael E. Foley ◽  
Shaioman Chao ◽  
Ruth A. Hufbauer ◽  
David P. Horvath

Invasive species such as Canada thistle pose a significant threat to ecosystems. The risk of introducing invasive species has increased with human activities, and the effects of such events have economic and aesthetic impacts. Native to Europe, Canada thistle is now established throughout temperate North America. Although there is documentation of early occurrences to North America, little is known on how it has become established in diverse habitats or how it continues to spread. We examined genetic diversity within and among nearly 1,700 Canada thistle individuals from 85 North American locations with the use of seven microsatellite markers in order to address these questions. PAUP and STRUCTURE programs were used to assess genetic diversity and relationships within and between populations. Populations exhibited greater within-population diversity (> 60%) than expected for a reported clonally reproducing species. Total diversity of sampled locations in North America (0.183) was less than previously reported for European locations (0.715), but the greater mean difference between North American populations (0.264 relative to 0.246 from England) suggests strong founder effects or restriction of gene flow influencing individual populations. Furthermore, analyses identified numerous instances where individuals from geographically distant regions clustered together, indicating long-distance translocation of propogules. However, isolation by distance analysis showed significant correlation between location and population genetic distances (r = 0.1917, P = 0.006). Within populations, nearly 92% of individuals sampled harbored unique multilocus genotypes, strongly suggesting that sexual reproduction is common. Within populations, analysis of genetic structure indicated significant admixture of genotypes throughout the invasive range in North America. The recurrent distribution of seed throughout North America has led to a highly diverse gene pool and increased the adaptive success Canada thistle to a wide variety of habitats. Future technologies developed for control of Canada thistle should consider this diversity.


Author(s):  
Kalev Adamson ◽  
Marili Laas ◽  
Kathrin Blumenstein ◽  
Johanna Busskamp ◽  
Gitta Langer ◽  
...  

Diplodia sapinea is a cosmopolitan endophyte and opportunistic pathogen occurring on several conifer species in Europe for at least 200 years. In Europe, disease outbreaks have increased on several Pinus spp. in the last few decades. In this study, the genetic structure of the European D. sapinea population was investigated using thirteen microsatellite markers. In total, 425 isolates from 15 countries were analysed. A high clonal fraction and low genetic distance between most populations was found. One single haplotype dominates the European population, being represented by 44% of all isolates and found in nearly all investigated countries. Three genetically distinct subpopulations were found: Central/North European, Italian and Georgian. The recently detected populations of D. sapinea in northern Europe (Latvia, Estonia and Finland) share several haplotypes with the German population, suggesting introduction from Central Europe. The northern European populations show similar genetic diversity to those in Central Europe suggesting either that the fungus has existed in the North in an asymptomatic mode for a long time or that it has spread recently by multiple introductions. Although this fungus reproduces predominantly asexually, considerable genetic diversity was found even among isolates of a single tree. According to currently published allelic patterns, D. sapinea most likely originates from North America. In order to enable the detection of endophytic or latent infections of planting stock by D. sapinea, new species-specific PCR primers were designed. During the search for Diplodia isolates, we identified D. africana in California, USA, which is the first record of this species in North America.


Sign in / Sign up

Export Citation Format

Share Document