Uptake, translocation, and metabolism of sulfentrazone in peanut, prickly sida (Sida spinosa), and pitted morningglory (Ipomoea lacunosa)

Weed Science ◽  
2005 ◽  
Vol 53 (4) ◽  
pp. 446-450 ◽  
Author(s):  
Walter E. Thomas ◽  
Shawn C. Troxler ◽  
W. David Smith ◽  
Loren R. Fisher ◽  
John W. Wilcut

Studies were conducted to evaluate uptake, translocation, and metabolism of root-absorbed14C-sulfentrazone in peanut, prickly sida, and pitted morningglory. Peanut absorbed more than five and three times greater14C-sulfentrazone than pitted morningglory and prickly sida, respectively. All plant species translocated appreciable amounts (≥ 39%) of radioactivity to the leaves. The three plant species had some capacity to metabolize14C-sulfentrazone. At 3 h after treatment, 7, 29, and 71% of the radioactivity in the shoots of peanut, prickly sida, and pitted morningglory, respectively, was sulfentrazone. Sulfentrazone levels in the shoots at 3 and 6 h after treatment correspond to reported tolerance levels, with peanut being the most tolerant of the three species, whereas prickly sida and pitted morningglory are moderately tolerant and completely susceptible to sulfentrazone, respectively. Levels of metabolites varied among species, plant part, and harvest timing. On the basis of these data, tolerance in peanut is largely due to its ability to rapidly metabolize sulfentrazone.

Weed Science ◽  
1980 ◽  
Vol 28 (5) ◽  
pp. 568-572 ◽  
Author(s):  
G. A. Buchanan ◽  
J. E. Street ◽  
R. H. Crowley

Influence of time of planting and distance from the cotton row of pitted morningglory (Ipomoea lacunosaL.), prickly sida (Sida spinosaL.), and redroot pigweed (Amaranthus retroflexusL.) on yield of seed cotton (Gossypium hirsutumL. ‘Stoneville 213’) was determined on Decatur clay loam during 1975 through 1978. Weed growth was measured in 1977 and 1978. Seeds of the three weed species were planted 15, 30, or 45 cm from the cotton row at time of planting cotton or 4 weeks later. Weeds planted 4 weeks after planting cotton grew significantly less than did weeds planted at the same time as cotton. When planted with cotton, redroot pigweed produced over twice as much fresh weight as did prickly sida or pitted morningglory. The distance that weeds were planted from the cotton row did not affect weed growth in 1978, but did in 1977. The distance that weeds were planted from the cotton row did not affect their competitiveness in any year as measured by yield of cotton. However, in each year, yields of cotton were reduced to a greater extent by weeds planted with cotton than when planted 4 weeks later. In 3 of 4 yr, there were significant differences in competitiveness of each of the three weed species with cotton.


1999 ◽  
Vol 13 (3) ◽  
pp. 466-470 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Lawrence R. Oliver ◽  
Larry C. Purcell

Time of day at which a herbicide is applied can affect efficacy, and variability may be attributed to leaf angles at application. Spray interception by hemp sesbania (Sesbania exaltata), sicklepod (Senna obtusifolia), and prickly sida (Sida spinosa) under day and night conditions was quantified by measuring interception of a 2-M potassium nitrate solution. Following the night application, interception by prickly sida, hemp sesbania, and sicklepod was reduced 17, 67, and 70%, respectively. In a second study in the greenhouse, glyphosate was applied to hemp sesbania, pitted morningglory (Ipomoea lacunosa), prickly sida, and sicklepod at 6:00 and 11:00 A.M. and 4:00 and 9:00 P.M. Control of all species was dependent on the time of day treated, with night applications generally being less effective.


1999 ◽  
Vol 13 (3) ◽  
pp. 594-598 ◽  
Author(s):  
Shawn D. Askew ◽  
John W. Wilcut ◽  
John R. Cranmer

Flumioxazin plus metolachlor mixtures preemergence (PRE) were evaluated with or without postemergence (POST) herbicides for weed control and peanut (Arachis hypogaea) response in three North Carolina studies. Metolachlor PRE at 2.24 kg ai/ha controlled goosegrass (Eleusine indica) and yellow nutsedge (Cyperus esculentus) 93 and 80%, respectively, and control was not improved with flumioxazin or norflurazon. Metolachlor plus flumioxazin PRE at 0.07 or 0.11 kg ai/ha controlled common lambsquarters (Chenopodium album); entireleaf (Ipomoea hederaceavar.integriuscula), ivyleaf (I. hederacea), and pitted morningglory (I. lacunosa); and prickly sida (Sida spinosa) better than metolachlor plus norflurazon PRE at 1.34 kg ai/ha. Morningglories (Ipomoeaspp.) were controlled 77 and 86% with flumioxazin PRE at 0.07 and 0.11 kg/ha, respectively, and control was increased to nearly 100% with acifluorfen plus 2,4-DB or lactofen plus 2,4-DB POST. Peanut injury by flumioxazin and norflurazon was observed at one location in 1997; however, yields were not reduced. Peanut treated with metolachlor plus flumioxazin PRE at either rate yielded at least 3,750 kg/ha compared to 3,120 kg/ha with metolachlor plus norflurazon PRE or 1,320 kg/ha with metolachlor PRE.


Weed Science ◽  
1973 ◽  
Vol 21 (4) ◽  
pp. 322-324 ◽  
Author(s):  
C. S. Hoveland ◽  
G. A. Buchanan

Seeds of five crop and 17 weed species were germinated with 0, 3, 6, and 10-bar water solutions of polyethylene glycol to simulate drought. With simulated drought, most weed species germinated better than soybeans (Glycine maxL. ‘Hampton 266A’) but were not equal to pearlmillet [Pennisetum typhoides(Burm.) Stapf. and C. E. Hubb ‘Millex 23’] or sorghum-sudangrass [Sorghum bicolor(L.) Moench xS. sudanense(Piper) ‘SX-16’]. Prickly sida (Sida spinosaL,), sicklepod (Cassia obtusifoliaL.), andIpomoea lacunosaL. were the most tolerant weed species to simulated drought. Four species were intermediate in tolerance and four species germinated poorly under simulated drought. Hemp sesbania [Sesbania exaltata(Raf.) Cory] was the least tolerant and was similar to soybean.


Weed Science ◽  
1982 ◽  
Vol 30 (5) ◽  
pp. 520-526 ◽  
Author(s):  
Steve D. Lee ◽  
Lawrence R. Oliver

In field tests, common cocklebur (Xanthium pensylvanicumWallr.) was controlled at the one- and two-leaf stages with 0.3 kg/ha acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid}. Four-leaf common cocklebur required 1.1 kg/ha for comparable control. Acifluorfen at 0.6 and 0.8 kg/ha controlled 96 and 90% of entireleaf morningglory [Ipomoea hederacea(L.) Jacq. var.integriuscula] atone- and two-leaf stages, respectively, but control was reduced as plants aged. Dark applications (2100 h) were more effective than those at sun-up (0600 h) or midday (1200 h) in control of hemp sesbania [Sesbania exaltata(Raf.) Cory], pitted morningglory (Ipomoea lacunosaL.), and smooth pigweed (Amaranthus hybridusL.). Hour of application had no significant influence on control of common cocklebur or prickly sida (Sida spinosaL.). An increase in surfactant (80% alkyl aryl polyoxyethylene glycols) concentration enhanced acifluorfen control of entireleaf morningglory and Texas gourd [Cucurbita texana(A.) Gray] at the 0.3-kg/ha rate applied 2 weeks after emergence. Soybean [Glycine max(L.) Merr.] injury was increased with the 1.1-kg/ha rate when surfactant concentration was increased from 0.5 to 0.75%. Increasing the spray volume increased pitted morningglory control but decreased hemp sesbania control. In the growth chamber, better control of pitted morningglory and common cocklebur was obtained at high (35 C day, 26 C night) than at low temperatures (27 C day, 18 C night) when plants were treated 1 week after emergence.


1999 ◽  
Vol 13 (3) ◽  
pp. 450-456 ◽  
Author(s):  
William A. Bailey ◽  
John W. Wilcut ◽  
David L. Jordan ◽  
Charles W. Swann ◽  
Vernon B. Langston

Field studies were conducted at five locations in North Carolina and Virginia in 1996 and 1997 to evaluate weed control and peanut (Arachis hypogaea) response to diclosulam that was applied preemergence (PRE) and in systems with commercial standards. All plots received a preplant incorporated (PPI) treatment of ethalfluralin at 840 g ai/ha. Diclosulam controlled common lambsquarters (Chenopodium albumL.), eclipta (Eclipta prostrataL.), entireleaf morningglory (Ipomoea hederaceavar.integriusculaGray), ivyleaf morningglory [Ipomoea hederacea(L.) Jacq.], pitted morningglory (Ipomoea lacunosaL.), and prickly sida (Sida spinosaL.) as well as and frequently better than the commercial standards of acifluorfen plus bentazon applied postemergence (POST), paraquat plus bentazon early POST followed by (fb) imazapic POST, or imazapic POST. Systems with ethalfluralin PPI plus diclosulam PRE at 26 g ai/ha fb acifluorfen plus bentazon POST controlled a broader spectrum of weeds and yielded greater than systems of ethalfluralin PPI fb imazapic POST or ethalfluralin PPI fb acifluorfen plus bentazon POST. Peanut exhibited excellent tolerance to diclosulam PRE at 17, 26, or 35 g/ha.


1999 ◽  
Vol 13 (4) ◽  
pp. 771-776 ◽  
Author(s):  
William A. Bailey ◽  
John W. Wilcut ◽  
David L. Jordan ◽  
Charles W. Swann ◽  
Vernon B. Langston

Field studies were conducted at five locations in North Carolina and Virginia during 1996 and 1997 to evaluate weed control, peanut (Arachis hypogaea) response, and peanut yield following diclosulam applied preplant incorporated (PPI) and in systems with commercial herbicide standards. All plots received a PPI treatment of ethalfluralin at 840 g ai/ha. Ethalfluralin plus diclosulam controlled entireleaf morningglory (Ipomoea hederaceavar.integriuscula), ivyleaf morningglory (I. hederacea), pitted morningglory (I. lacunosa), common lambsquarters (Chenopodium album), eclipta (Eclipta prostrata), and prickly sida (Sida spinosa) as well as and frequently better than ethalfluralin PPI followed by (fb) acifluorfen plus bentazon postemergence (POST), paraquat plus bentazon early postemergence (EPOST) fb imazapic POST, or imazapic POST. Systems with ethalfluralin plus diclosulam PPI at 26 g ai/ha fb acifluorfen plus bentazon POST controlled a broader spectrum of weeds and yielded greater than systems of ethalfluralin PPI fb imazapic POST or ethalfluralin PPI fb acifluorfen plus bentazon POST. Peanut exhibited excellent tolerance to diclosulam PPI at 17, 26, or 35 g/ha.


cftm ◽  
2021 ◽  
Author(s):  
Josh T. Copes ◽  
Donnie K. Miller ◽  
Rakesh K. Godara ◽  
James L. Griffin

Bothalia ◽  
2001 ◽  
Vol 31 (1) ◽  
pp. 71-98 ◽  
Author(s):  
V. L. Williams ◽  
K. Balkwill ◽  
E. T. F. Witkowski

At least 511 medicinal plant species are traded commercially in 50 Witwatersrand  umuthi shops. The plants are listedalphabetically by genus and common (vernacular) name. The orthographic vernacular names, as well as the orthographicvariations in these names, are incorporated into the list. Annotations include the plant family, the number of umuthi shopsstocking the species, the language of the common name, and the plant part traded. The plant family in the region which hasthe highest number of species and infraspecific taxa in trade is Liliaceae  sensu lato., followed in descending order by  Fabaceae, Asteraceae. Euphorbiaceae and Amaryllidaceae. Approximately 88.6% of the vernacular names are in Zulu. Themean number of umuthi shops per species is 12.3. ranging from 1 to 41. Three hundred and fifty three species (69.2%) occurin the four northern provinces, and 23 species are listed as threatened on the Red Data List.


Weed Science ◽  
1992 ◽  
Vol 40 (4) ◽  
pp. 503-506 ◽  
Author(s):  
Mark A. Risley ◽  
Lawrence R. Oliver

Pitted morningglory and entireleaf morningglory treated with14C-imazaquin translocated14C to areas above and below the treated leaf. Pitted morningglory absorbed and translocated more14C from14C-imazaquin than entireleaf morningglory. Translocation of14C from root-supplied14C-imazaquin was similar in both species 1 d after treatment, with14C moving rapidly to the shoots. Entireleaf morningglory metabolized slightly more imazaquin than pitted morningglory in treated leaves. Greater tolerance of entireleaf morningglory than pitted morningglory to postemergence applications of imazaquin is attributed to reduced absorption and translocation and increased metabolism of the herbicide in the entireleaf morningglory.


Sign in / Sign up

Export Citation Format

Share Document