Influence of Time of Planting and Distance from the Cotton (Gossypium hirsutum) Row of Pitted Morningglory (Ipomoea lacunosa), Prickly Sida (Sida spinosa), and Redroot Pigweed (Amaranthus retroflexus) on Competitiveness with Cotton

Weed Science ◽  
1980 ◽  
Vol 28 (5) ◽  
pp. 568-572 ◽  
Author(s):  
G. A. Buchanan ◽  
J. E. Street ◽  
R. H. Crowley

Influence of time of planting and distance from the cotton row of pitted morningglory (Ipomoea lacunosaL.), prickly sida (Sida spinosaL.), and redroot pigweed (Amaranthus retroflexusL.) on yield of seed cotton (Gossypium hirsutumL. ‘Stoneville 213’) was determined on Decatur clay loam during 1975 through 1978. Weed growth was measured in 1977 and 1978. Seeds of the three weed species were planted 15, 30, or 45 cm from the cotton row at time of planting cotton or 4 weeks later. Weeds planted 4 weeks after planting cotton grew significantly less than did weeds planted at the same time as cotton. When planted with cotton, redroot pigweed produced over twice as much fresh weight as did prickly sida or pitted morningglory. The distance that weeds were planted from the cotton row did not affect weed growth in 1978, but did in 1977. The distance that weeds were planted from the cotton row did not affect their competitiveness in any year as measured by yield of cotton. However, in each year, yields of cotton were reduced to a greater extent by weeds planted with cotton than when planted 4 weeks later. In 3 of 4 yr, there were significant differences in competitiveness of each of the three weed species with cotton.

2004 ◽  
Vol 18 (4) ◽  
pp. 1031-1036 ◽  
Author(s):  
Samunder Singh ◽  
Megh Singh

Efficacy of trifloxysulfuron with and without surfactant was evaluated against balsamapple, cat's claw vine, Florida beggarweed, hairy beggarticks, ivyleaf morningglory, johnsongrass, prickly sida, redroot pigweed, sicklepod, strangler vine, tall morningglory, and yellow nutsedge at 21, 42, and 63 g ai/ha applied at the four- or six-leaf stages and compared with glyphosate at 280, 560, and 840 g ae/ha. Delayed application from the four- to six-leaf stage significantly reduced trifloxysulfuron efficacy; reduction was less with glyphosate. Trifloxysulfuron plus 0.25% X-77 was more effective on the four-leaf stage than on the six-leaf stage plants of redroot pigweed, johnsongrass, hairy beggarticks, strangler vine, and prickly sida; effect was similar on yellow nutsedge, sicklepod, Florida beggarweed, balsamapple, ivyleaf morningglory, and tall morningglory. Trifloxysulfuron at 63 g/ha plus surfactant reduced the fresh weight of all test plants more than 80% compared with control, except prickly sida, strangler vine, and cat's claw vine. Glyphosate was less effective than trifloxysulfuron plus surfactant against tall morningglory, sicklepod, ivyleaf morningglory, and yellow nutsedge but was significantly better against balsamapple, prickly sida, and cat's claw vine. None of the herbicides provided satisfactory control of cat's claw vine, strangler vine, and prickly sida.


Weed Science ◽  
1978 ◽  
Vol 26 (3) ◽  
pp. 249-251 ◽  
Author(s):  
G. H. Egley ◽  
R. D. Williams

Glyphosate [N-(phosphonomethyl)glycine] (30, 125, 250 mg/L) in petri dishes had no effect on germination of prickly sida(Sida spinosaL.), velvetleaf(Abutilon theophrastiMedic), barnyardgrass [Echinocloa crus-galli(L.) Beauv.] and johnsongrass [Sorghum halepense(L.) Pers.] seeds, but additional experimentation indicated that glyphosate stimulated germination of redroot pigweed(Amaranthus retroflexusL.) seeds. Paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) (30, 125, 250 mg/L) did not affect germination of the three broadleaf species, but inhibited johnsongrass and barnyardgrass germination. In the greenhouse, soil surface applications of glyphosate (1.1, 2.2, 9.0 kg/ha) did not significantly affect emergence of these five weed species when they were on or beneath the soil surface at time of treatment. Paraquat (same rates) did not affect broadleaf weed emergence but some rates inhibited grass weed emergence when the seeds were treated while on the soil surface. It is unlikely that normal field use rates of glyphosate will influence weed emergence; whereas paraquat may inhibit the emergence of some grass weeds if the herbicide contacts seeds on the soil surface.


Weed Science ◽  
1973 ◽  
Vol 21 (4) ◽  
pp. 322-324 ◽  
Author(s):  
C. S. Hoveland ◽  
G. A. Buchanan

Seeds of five crop and 17 weed species were germinated with 0, 3, 6, and 10-bar water solutions of polyethylene glycol to simulate drought. With simulated drought, most weed species germinated better than soybeans (Glycine maxL. ‘Hampton 266A’) but were not equal to pearlmillet [Pennisetum typhoides(Burm.) Stapf. and C. E. Hubb ‘Millex 23’] or sorghum-sudangrass [Sorghum bicolor(L.) Moench xS. sudanense(Piper) ‘SX-16’]. Prickly sida (Sida spinosaL,), sicklepod (Cassia obtusifoliaL.), andIpomoea lacunosaL. were the most tolerant weed species to simulated drought. Four species were intermediate in tolerance and four species germinated poorly under simulated drought. Hemp sesbania [Sesbania exaltata(Raf.) Cory] was the least tolerant and was similar to soybean.


Weed Science ◽  
2005 ◽  
Vol 53 (4) ◽  
pp. 446-450 ◽  
Author(s):  
Walter E. Thomas ◽  
Shawn C. Troxler ◽  
W. David Smith ◽  
Loren R. Fisher ◽  
John W. Wilcut

Studies were conducted to evaluate uptake, translocation, and metabolism of root-absorbed14C-sulfentrazone in peanut, prickly sida, and pitted morningglory. Peanut absorbed more than five and three times greater14C-sulfentrazone than pitted morningglory and prickly sida, respectively. All plant species translocated appreciable amounts (≥ 39%) of radioactivity to the leaves. The three plant species had some capacity to metabolize14C-sulfentrazone. At 3 h after treatment, 7, 29, and 71% of the radioactivity in the shoots of peanut, prickly sida, and pitted morningglory, respectively, was sulfentrazone. Sulfentrazone levels in the shoots at 3 and 6 h after treatment correspond to reported tolerance levels, with peanut being the most tolerant of the three species, whereas prickly sida and pitted morningglory are moderately tolerant and completely susceptible to sulfentrazone, respectively. Levels of metabolites varied among species, plant part, and harvest timing. On the basis of these data, tolerance in peanut is largely due to its ability to rapidly metabolize sulfentrazone.


1997 ◽  
Vol 11 (2) ◽  
pp. 354-362 ◽  
Author(s):  
David L. Jordan ◽  
Alan C. York ◽  
James L. Griffin ◽  
Patrick A. Clay ◽  
P. Roy Vidrine ◽  
...  

Field experiments were conducted from 1993 to 1995 to compare weed control by the isopropylamine salt of glyphosate at 0.21, 0.42, 0.63, and 0.84 kg ae/ha applied at three stages of weed growth. Weed control by glyphosate applied at these rates alone or with ammonium sulfate at 2.8 kg/ha was also evaluated. In other experiments, potential interactions between glyphosate and acifluorfen, chlorimuron, and 2,4-DB were evaluated. Velvetleaf, prickly sida, sicklepod, pitted morningglory, entireleaf morningglory, palmleaf morningglory, and hemp sesbania were controlled more easily when weeds had one to three leaves compared with control when weeds had four or more leaves. Glyphosate controlled redroot pigweed, velvetleaf, prickly sida, sicklepod, and barnyardgrass more effectively than pitted morningglory, entireleaf morningglory, palmleaf morningglory, or hemp sesbania. Increasing the rate of glyphosate increased control, especially when glyphosate was applied to larger weeds. Greater variation in control was noted for pitted morningglory, palmleaf morningglory, prickly sida, and velvetleaf than for redroot pigweed, sicklepod, entireleaf morningglory, or hemp sesbania. Ammonium sulfate increased prickly sida and entireleaf morningglory control but did not influence sicklepod, hemp sesbania, or barnyardgrass control. Acifluorfen applied 3 d before glyphosate or in a mixture with glyphosate reduced barnyardgrass control compared with glyphosate applied alone. Chlorimuron did not reduce efficacy. Mixtures of glyphosate and 2,4-DB controlled sicklepod, entireleaf morningglory, and barnyardgrass similar to glyphosate alone.


1999 ◽  
Vol 13 (3) ◽  
pp. 466-470 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Lawrence R. Oliver ◽  
Larry C. Purcell

Time of day at which a herbicide is applied can affect efficacy, and variability may be attributed to leaf angles at application. Spray interception by hemp sesbania (Sesbania exaltata), sicklepod (Senna obtusifolia), and prickly sida (Sida spinosa) under day and night conditions was quantified by measuring interception of a 2-M potassium nitrate solution. Following the night application, interception by prickly sida, hemp sesbania, and sicklepod was reduced 17, 67, and 70%, respectively. In a second study in the greenhouse, glyphosate was applied to hemp sesbania, pitted morningglory (Ipomoea lacunosa), prickly sida, and sicklepod at 6:00 and 11:00 A.M. and 4:00 and 9:00 P.M. Control of all species was dependent on the time of day treated, with night applications generally being less effective.


Weed Science ◽  
1976 ◽  
Vol 24 (4) ◽  
pp. 353-355 ◽  
Author(s):  
E. L. Robinson

Over a 3-yr period the placement of weeds in relation to cotton (Gossypium hirsutumL.) plants greatly influenced the seed cotton yields. After 3-yr of competition the cotton with no weeds yielded about 2300 kg/ha. With weeds confined to between-the-rows placement, yields were about 850 kg/ha. When weeds were confined to in-the-row placement, the cotton was completely shaded and produced no yield. After 3-yr of intense competition throughout each entire growing season no statistical differences were demonstrated between the competitiveness of large crabgrass [Digitaria sanguinalis(L.) Scop.], spurred anoda [Anoda cristata(L.) Schlecht.], prickly sida (Sida spinosaL.) and velvetleaf (Abutilon theophrastiMedic.) to cotton.


Weed Science ◽  
1974 ◽  
Vol 22 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Lawrence R. Oliver ◽  
Marvin M. Schreiber

At early stages of canopy development net carbon exchange (NCE) values for redroot pigweed (Amaranthus retroflexusL.), prickly sida (Sida spinosaL.), and birdsfoot trefoil (Lotus corniculatusL.) were determined in an air-sealed leaf chamber. Regardless of light intensity, temperature, CO2concentration, or competition level, redroot pigweed had a NCE at least 10 mg CO2/dm2per hr higher than that of birdsfoot trefoil or prickly sida. On a total leaf area basis, CO2utilization changed as the heteroculture canopies developed and as the microenvironmental parameters changed. Redroot pigweed's rapid attainment of leaf area and leaf display coupled with a high photosynthetic (P) rate greatly enhance its utilization of available CO2. Direct competition for CO2does not occur between plants with low and high (P) rates under field conditions because CO2concentrations are always greater than the CO2compensation point (r) of plants with low (P) rates. More efficient utilization of available CO2by weeds such as redroot pigweed with greater (P) capacity contributes to more rapid growth and development of these weeds to the ultimate detriment of a plant such as birdsfoot trefoil with lower (P) capacity.


2007 ◽  
Vol 21 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Clifford H. Koger ◽  
Ian C. Burke ◽  
Donnie K. Miller ◽  
J. Andrew Kendig ◽  
Krishna N. Reddy ◽  
...  

Field and greenhouse studies were conducted to investigate the compatibility of MSMA in a tank mixture with glyphosate or glufosinate for broadleaf and grass weed control. Glyphosate, glufosinate, and MSMA were evaluated at 0.5×, 1×, and 2× rates, with 1× rates of 0.84 kgae/ha, 0.5 kgai/ha, and 2.2 kgai/ha, respectively. Glyphosate and glufosinate provided similar levels of control for most weed species and were often more efficacious than MSMA alone. Glyphosate controlled Palmer amaranth better than glufosinate. Glufosinate controlled hemp sesbania, pitted morningglory, and ivyleaf morningglory better than glyphosate at one location. Weed control was not improved with the addition of MSMA to glyphosate or glufosinate when compared with either herbicide alone. MSMA antagonized glyphosate efficacy on barnyardgrass, browntop millet, hemp sesbania, Palmer amaranth, and redroot pigweed. MSMA antagonized glufosinate efficacy on browntop millet, hemp sesbania, ivyleaf morningglory, johnsongrass, Palmer amaranth, pitted morningglory, prickly sida, redroot pigweed, and velvetleaf. Antagonism of glyphosate or glufosinate by MSMA was often overcome by applying the 2× rate of either herbicide alone. MSMA is not a compatible tank-mixture partner with glyphosate or glufosinate for weed control in cotton.


1993 ◽  
Vol 7 (1) ◽  
pp. 202-211 ◽  
Author(s):  
David L. Jordan ◽  
Alan C. York ◽  
Marilyn R. McClelland ◽  
Robert E. Frans

Efficacy of herbicide programs containing clomazone PPI plus fluometuron PRE or clomazone plus pendimethalin PPI plus fluometuron PRE was compared with that of standard programs of pendimethalin PPI plus fluometuron PRE and norflurazon PPI plus norflurazon and fluometuron PRE. Cotton injury was less than 5% with all treatments when disulfoton or phorate was applied in the seed furrow. Control of fall panicum, goosegrass, large crabgrass, eclipta, entireleaf morningglory, ivyleaf morningglory, pitted morningglory, tall morningglory, prickly sida, redroot pigweed, smooth pigweed, hemp sesbania, spotted spurge, sicklepod, and velvetleaf and cotton yields with 0.8 kg ai ha−1 of clomazone plus fluometuron or 0.6 kg ha−1 of clomazone plus pendimethalin plus fluometuron equalled or exceeded that from the standard herbicide programs. POST-directed application of methazole at 0.8 kg ai ha−1 plus MSMA at 2.2 kg ae ha−1 increased sicklepod and morningglory control and cotton yield. Clomazone applied PRE at 0.6 kg ha−1 with fluometuron controlled broadleaf signalgrass, goosegrass, large crabgrass, prickly sida, and smooth pigweed equally with that of standard treatments of trifluralin or trifluralin plus norflurazon PPI and fluometuron PRE, whereas pitted morningglory control and cotton yield with clomazone plus fluometuron exceeded that with the standards.


Sign in / Sign up

Export Citation Format

Share Document