Functional relationships between giant ragweed (Ambrosia trifida) interference and sweet corn yield and ear traits

Weed Science ◽  
2006 ◽  
Vol 54 (5) ◽  
pp. 948-953 ◽  
Author(s):  
Martin M. Williams ◽  
John B. Masiunas

Field experiments were conducted to quantify functional relationships between giant ragweed density and sweet corn yield and ear traits. A rectangular hyperbolic model was fit to yield loss measured in terms of marketable ear mass, appropriate for the processing industry, and boxes of 50 marketable ears, relevant to the fresh market industry. The initial slope of the hyperbolic yield loss function (I), which describes the linear portion of yield loss as weed density (weeds per square meter) approaches zero, was 119 for loss of ear mass and 97 for loss of boxes of ears. Furthermore, 10 of 12 ear traits including green ear mass, husked ear mass, ear length, filled ear length, ear width, number of kernels per row, number of rows, kernel depth, kernel mass, and kernel moisture content were significantly affected by giant ragweed interference.

Weed Science ◽  
2004 ◽  
Vol 52 (6) ◽  
pp. 976-983 ◽  
Author(s):  
Stephanie R. Deines ◽  
J. Anita Dille ◽  
Eric L. Blinka ◽  
David L. Regehr ◽  
Scott A. Staggenborg

Multiple weed species in the field combine to cause yield losses and can be described using one of several empirical models. Field studies were conducted to compare observed corn yield loss caused by common sunflower and shattercane populations with predicted yield losses modeled using a multiple species rectangular hyperbola model, an additive model, or the yield loss model in the decision support system, WeedSOFT, and to derive competitive indices for common sunflower and shattercane. Common sunflower and shattercane emerged with corn and selected densities established in field experiments at Scandia and Rossville, KS, between 2000 and 2002. The multiple species rectangular hyperbola model fit pooled data from three of five location–years with a predicted maximum corn yield loss of 60%. Initial slope parameter estimate for common sunflower was 49.2 and 4.2% for shattercane. A ratio of these estimates indicated that common sunflower was 11 times more competitive than shattercane. When common sunflower was assigned a competitive index (CI) value of 10, shattercane CI was 0.9. Predicted yield losses modeled for separate common sunflower or shattercane populations were additive when compared with observed yield losses caused by low-density mixed populations of common sunflower (0 to 0.5 plants m−2) and shattercane (0 to 4 plants m−2). However, a ratio of estimates of these models indicated that common sunflower was only four times as competitive as shattercane, with a CI of 2.5 for shattercane. The yield loss model in WeedSOFT underpredicted the same corn losses by 7.5%. Clearly, both the CI for shattercane and the yield loss model in WeedSOFT need to be reevaluated, and the multiple species rectangular hyperbola model is proposed.


2018 ◽  
Vol 98 (4) ◽  
pp. 908-917 ◽  
Author(s):  
Simranpreet Kaur ◽  
Amit J. Jhala

The objectives of this study were to evaluate the efficacy of a new premix of iodosulfuron (6%)/thiencarbazone (45%) applied alone or tank-mixed with 2,4-D, dicamba, glyphosate, or metribuzin in the fall and (or) early spring followed by preemergence (PRE) and postemergence (POST) herbicide applications for control of glyphosate-resistant giant ragweed and their effect on corn yield. Field experiments were conducted in no-till corn fields infested with glyphosate-resistant giant ragweed (20–30 plants m−2) near Clay Center and McCool Junction, NE, in 2013 and 2014, respectively. A premix of iodosulfuron/thiencarbazone applied alone or in split applications in the fall and early spring controlled glyphosate-resistant giant ragweed <60% and resulted in a density of 14 giant ragweed plants m−2, which was comparable to the untreated control at 28 d after early spring treatment (DAEST). Metribuzin or 2,4-D applied alone resulted in <75% giant ragweed control at 28 DAEST; however, 2,4-D or dicamba tank-mixed with iodosulfuron/thiencarbazone provided ≥92% control. Treatments including 2,4-D or dicamba led to 85%–98% reduction in giant ragweed biomass at 28 DAEST. A follow-up application of a premix of isoxaflutole/thiencarbazone tank-mixed with atrazine applied PRE was not effective, although a POST application of tembotrione + atrazine resulted in >91% control at 28 d after postemergence treatment. The premix applied alone did not provide effective control of giant ragweed in corn primarily because lack of residual activity.


Weed Science ◽  
1991 ◽  
Vol 39 (3) ◽  
pp. 358-362 ◽  
Author(s):  
Jerry A. Baysinger ◽  
Barry D. Sims

Field experiments were established near Portageville, MO, to determine the effects of giant ragweed interference in soybeans. Threshold densities of giant ragweed that reduced soybean yield were less than two plants 9 m−1of soybean row. This density reduced soybean seed yield 46 and 50% in 1988 and 1989, respectively, after full-season interference. The critical duration of giant ragweed interference in soybeans was between 4 and 6 weeks after emergence (WAE) in 1988 and between 2 and 4 WAE in 1989. Full-season giant ragweed interference at densities of 220 000 and 360 000 plants ha−1in 1988 and 1989, respectively, resulted in almost complete soybean yield loss. Eight to 10 weeks after emergence of giant ragweed-free conditions were required to prevent soybean yield reductions.


1994 ◽  
Vol 8 (3) ◽  
pp. 559-564 ◽  
Author(s):  
Theodore M. Webster ◽  
Mark M. Loux ◽  
Emilie E. Regnier ◽  
S. Kent Harrison

Field experiments were established at Columbus and near South Charleston, OH to determine the effects of giant ragweed population density on soybean yield and to characterize the development of giant ragweed grown in 76-cm soybean rows. An economic threshold was calculated for Ohio using a common treatment for giant ragweed control in soybean. A cost of $41/ha was estimated for a farmer to apply 0.56 kg/ha bentazon plus 0.28 kg/ha fomesafen plus COC (1.25% v/v). Assuming a soybean value of $0.22/kg, the cost of control was equivalent to 5.4 and 7.1% of the soybean yield in 1991 and 1992, respectively, which corresponded to the yield loss caused by 0.08 and 0.03 giant ragweed plants/m2. The competitiveness of giant ragweed can be at least partly attributed to its ability to initiate and maintain axillary leaves and branches within the shaded confines of the soybean canopy.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 354-363 ◽  
Author(s):  
Darren C. Barker ◽  
Stevan Z. Knezevic ◽  
Alex R. Martin ◽  
Daniel T. Walters ◽  
John L. Lindquist

Weeds that respond more to nitrogen fertilizer than crops may be more competitive under high nitrogen (N) conditions. Therefore, understanding the effects of nitrogen on crop and weed growth and competition is critical. Field experiments were conducted at two locations in 1999 and 2000 to determine the influence of varying levels of N addition on corn and velvetleaf height, leaf area, biomass accumulation, and yield. Nitrogen addition increased corn and velvetleaf height by a maximum of 15 and 68%, respectively. N addition increased corn and velvetleaf maximum leaf area index (LAI) by up to 51 and 90%. Corn and velvetleaf maximum biomass increased by up to 68 and 89% with N addition. Competition from corn had the greatest effect on velvetleaf growth, reducing its biomass by up to 90% compared with monoculture velvetleaf. Corn response to N addition was less than that of velvetleaf, indicating that velvetleaf may be most competitive at high levels of nitrogen and least competitive when nitrogen levels are low. Corn yield declined with increasing velvetleaf interference at all levels of N addition. However, corn yield loss due to velvetleaf interference was similar across N treatments except in one site–year, where yield loss increased with increasing N addition. Corn yield loss due to velvetleaf interference may increase with increasing N supply when velvetleaf emergence and early season growth are similar to that of corn.


2020 ◽  
Vol 34 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Jessica Quinn ◽  
Nader Soltani ◽  
Jamshid Ashigh ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractHorseweed is a competitive summer or winter annual weed that produces up to 230,000 small seeds per plant that are capable of traveling more than 500 km via wind. Giant ragweed is a tall, highly competitive summer annual weed. Glyphosate-resistant (GR) horseweed and GR giant ragweed pose significant challenges for producers in the United States and Ontario, Canada. It is thought that an integrated weed management (IWM) system involving herbicide rotation is required to control GR biotypes. Halauxifen-methyl is a new selective broadleaf POST herbicide registered for use in cereal crops; there is limited information on its efficacy on horseweed and giant ragweed. The purpose of this research was to determine the efficacy of halauxifen-methyl applied POST, alone and in a tank mix, for the control of GR horseweed and GR giant ragweed in wheat across southwestern Ontario. For each weed species, an efficacy study consisting of six field experiments was conducted over a 2-yr period (2018, 2019). At 8 wk after application (WAA), halauxifen-methyl, fluroxypyr/halauxifen-methyl, fluroxypyr/halauxifen-methyl + MCPA EHE, fluroxypyr + MCPA ester, 2,4-D ester, clopyralid, and pyrasulfotole/bromoxynil + ammonium sulfate controlled GR horseweed >95%. Fluroxypyr and MCPA provided only 86% and 37% control of GR horseweed, respectively. At 8 WAA, fluroxypyr, fluroxypyr/halauxifen-methyl, fluroxypyr/halauxifen-methyl + MCPA EHE, fluroxypyr + MCPA ester, fluroxypyr/halauxifen-methyl + MCPA EHE + pyroxsulam, 2,4-D ester, clopyralid, and thifensulfuron/tribenuron + fluroxypyr + MCPA ester controlled GR giant ragweed 87%, 88%, 90%, 94%, 96%, 96%, 98%, and 93%, respectively. Halauxifen-methyl and pyroxsulam provided only 45% and 28% control of GR giant ragweed, respectively. Halauxifen-methyl applied alone POST in the spring controlled GR horseweed but not GR giant ragweed in winter wheat.


Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Ella K. Ruf-Pachta ◽  
Dwain M. Rule ◽  
J. Anita Dille

Palmer amaranth influences selection of crop production practices such as irrigation, nitrogen (N) application, and weed control. The objectives of this research were to determine if Palmer amaranth was more responsive to applied N than corn and if this differed under dryland and irrigated conditions in Kansas. Field experiments were conducted near Manhattan, KS, in 2005 and 2006 to evaluate the influence of N rate and Palmer amaranth densities when grown with corn in two soil moisture environments. A very drought-stressed environment and a well-watered environment occurred in 2006, while both environments in 2005 were intermediate. Dryland weed-free corn yields were 46.5% of irrigated corn yields at the high N rate across years. Irrigated corn yields responded to increasing N rates. In the presence of Palmer amaranth, parameter estimates I and A for the yield loss relationship were not different across N rates for each environment and year except 2006 where 100% yield loss was estimated in dryland compared to 62.5% loss in irrigated environment at high N rates. In three of four environment-years, N rate did not affect the corn yield loss relationship with weed density. In 2006 irrigated environment, greater N rates had less corn yield loss caused by Palmer amaranth. By corn anthesis, weed-free corn biomass was 167.5% greater in irrigated than dryland environments in 2006. Palmer amaranth with no corn increased its biomass by 373 and 361% as N rate increased in 2005 and 2006, respectively. Nitrogen concentrations in plant tissues of corn or weed increased similarly as N rates increased from 0 to 224 kg N ha−1, thus highlighting that both corn and Palmer amaranth responded similarly to increasing N. In general, soil moisture environment was most critical when determining potential corn yield, followed by Palmer amaranth density and N rate.


Plant Disease ◽  
2021 ◽  
Author(s):  
Elizabeth C Bauske ◽  
Andrew J Friskop

Goss’s bacterial wilt and leaf blight (Goss’s wilt) of corn is the most important corn disease in North Dakota (ND), and yield loss due to the disease has not been reliably quantified in northern corn growing regions. To help quantify the amount of yield loss caused by Goss’s wilt, a total of six field experiments were conducted from 2015 to 2017. Experiments were designed in a randomized complete block with a split plot arrangement. Hybrids served as main plots and Clavibacter nebraskensis (Cn) inoculation timings as sub-plots. Three hybrids were used and classified as a susceptible, moderately susceptible, and resistant. Inoculation timings included a non-inoculated control, six to ten leaf collars (V6 to V10), reproductive silk stage (R1), or a sequential combination of V6 to V10 and R1. A high level of disease (greater than 50% on susceptible hybrid) occurred in three experiments, a low level of disease (less than 5% on susceptible hybrid) in one experiment, and no disease was reported in two experiments. A combined analysis of the high disease experiments indicated yield losses of 34 to 41% on the susceptible hybrid when Cn inoculation occurred at V6 to V10. Yield losses of 22 to 25% occurred on the moderately susceptible hybrid when C. nebraskensis inoculation occurred at V6 to V10, and statistical differences in yield loss were not found among inoculations timings on the resistant hybrid. Correlation analyses suggest that for every 1% increase in R1 disease severity on the susceptible hybrid, yield was reduced by 117 kg/ha (1.9 bu/A). The current study further demonstrates the importance of hybrid resistance and provides updated yield loss information on Goss’s wilt in a northern corn growing region.


1992 ◽  
Vol 6 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Jerry A. Baysinger ◽  
Barry D. Sims

Two field experiments were established in 1988 and 1989 in southeast Missouri to evaluate several herbicides and herbicide combinations for giant ragweed control in soybean. In 1988, a timely rainfall was not received for soil-applied herbicides and giant ragweed control was less than 75%. However, in 1989 soil moisture was sufficient for uptake of soil-applied herbicides and early season giant ragweed control was generally greater than 80%. Chlorimuron, chlorimuron plus 2,4-DB, imazaquin plus 2,4-DB, acifluorfen followed by naptalam plus 2,4-DB, fomesafen, and imazethapyr applied to 2.5 to 5-cm giant ragweed controlled more than 85% in 1988. In 1989, all POST treatments except imazaquin controlled more than 81% of giant ragweed 2 wk after treatments. Imazethapyr controlled seedling giant ragweed at heights up to 12 to 25 cm. Giant ragweed regrowth and/or reinfestation and giant ragweed seed production occurred with all herbicide treatments.


Weed Science ◽  
2013 ◽  
Vol 61 (4) ◽  
pp. 543-548 ◽  
Author(s):  
Kelly A. Barnett ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, including giant ragweed, are among the most challenging weeds for growers to control in cotton. A field study was conducted in 2011 and 2012 to determine the competitiveness of giant ragweed with densities of 0, 0.1, 0.2, 0.4, 0.8, or 1.6 plants m−1of row. Early in the growing season, giant ragweed competition with densities of at least 0.8 plants m−1row reduced cotton height compared with the weed-free control. Based on node above white flower (NAWF) and node above cracked boll (NACB) data, a delay in cotton maturity was observed for treatments with giant ragweed present at a density of 1.6 m−1of cotton row for NAWF and 0.8 m−1or 1.6 m−1of row for NACB. Lint yield losses of 50% were estimated for cotton with rows growing along side of giant ragweed at a density of 0.26 plants m−1row. Cotton in rows located 140 cm away from giant ragweed required an estimated 1.85 plants m−1row to reduce yield by 50%. These data suggest that giant ragweed sphere of influence was at least 1 m wide. Cotton fiber quality was not affected by giant ragweed at any density. Giant ragweed is a highly competitive weed in cotton, even at low densities, and efforts should be implemented to control giant ragweed early in the season to prevent cotton yield loss.


Sign in / Sign up

Export Citation Format

Share Document