scholarly journals Effect of nitrogen addition on the comparative productivity of corn and velvetleaf (Abutilon theophrasti)

Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 354-363 ◽  
Author(s):  
Darren C. Barker ◽  
Stevan Z. Knezevic ◽  
Alex R. Martin ◽  
Daniel T. Walters ◽  
John L. Lindquist

Weeds that respond more to nitrogen fertilizer than crops may be more competitive under high nitrogen (N) conditions. Therefore, understanding the effects of nitrogen on crop and weed growth and competition is critical. Field experiments were conducted at two locations in 1999 and 2000 to determine the influence of varying levels of N addition on corn and velvetleaf height, leaf area, biomass accumulation, and yield. Nitrogen addition increased corn and velvetleaf height by a maximum of 15 and 68%, respectively. N addition increased corn and velvetleaf maximum leaf area index (LAI) by up to 51 and 90%. Corn and velvetleaf maximum biomass increased by up to 68 and 89% with N addition. Competition from corn had the greatest effect on velvetleaf growth, reducing its biomass by up to 90% compared with monoculture velvetleaf. Corn response to N addition was less than that of velvetleaf, indicating that velvetleaf may be most competitive at high levels of nitrogen and least competitive when nitrogen levels are low. Corn yield declined with increasing velvetleaf interference at all levels of N addition. However, corn yield loss due to velvetleaf interference was similar across N treatments except in one site–year, where yield loss increased with increasing N addition. Corn yield loss due to velvetleaf interference may increase with increasing N supply when velvetleaf emergence and early season growth are similar to that of corn.

Weed Science ◽  
1997 ◽  
Vol 45 (2) ◽  
pp. 276-282 ◽  
Author(s):  
Aca C. Bosnic ◽  
Clarence J. Swanton

Barnyardgrass is a serious weed problem in cornfields in Ontario. Field experiments were conducted at two locations in 1994 and 1995 to determine the influence of emergence time and barnyardgrass density on corn yield loss, leaf area at 50% silking, and barnyardgrass seed production. Selected barnyardgrass densities up to 200 plants m−1were established within 12.5 cm on either side of the corn row. Barnyardgrass seeds were planted concurrently with corn and at the 3- to 5- or 1- to 2-leaf stage of corn growth in 1994 and 1995, respectively. Barnyardgrass density and seedling emergence relative to corn influenced the magnitude of corn yield loss. Maximum corn grain yield loss ranged from 26 to 35% for early emerging barnyardgrass, and less than 6% yield loss occurred from barnyardgrass seedlings emerging later than the 4-leaf stage of corn growth. Changes in corn leaf area index at 50% silking reflected the level of barnyardgrass competition in corn. Maximum leaf area reduction ranged from 21 to 23%. Barnyardgrass seed production varied with time of seedling emergence and density. Ten barnyardgrass plants emerging up to the 3-leaf stage of corn growth produced 14,400 to 34,600 seeds m−2compared to only 1,200 to 2,800 seeds m−2from plants emerging after the 4-leaf corn stage. The results of this study are essential in the development of an integrated weed management strategy for corn.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 515-520 ◽  
Author(s):  
H. M. Booker ◽  
P. Umaharan ◽  
C. R. McDavid

Field experiments were carried out in St. Augustine, Trinidad & Tobago, West Indies to determine the effects of time of inoculation of Cowpea severe mosaic virus (CPSMV) and cultivar on crop growth and yield in cowpea (Vigna unguiculata). Crop growth and yield loss were investigated through growth analysis and yield component analysis on three cultivars in two seasons (wet and dry). Time of inoculation had the most profound impact on yield. Inoculations during the early log phase (seedling stage), 12 days after seeding (DAS), consistently had the greatest impact (50 to 85% yield loss) compared with those inoculated during the exponential growth phase (24 DAS; 22 to 66% yield loss) or linear growth phase (35 DAS; 2 to 36% yield loss). The effects were particularly pronounced in the dry season and in the more determinate cultivar, H8-8-27. Reduction in maximum leaf area index, leaf area duration, or maximum vegetative dry matter explained reductions in yield. Yield reductions resulted primarily from reduced pod number per plant and, to a lesser extent, from reduced average pod dry weight. The results show that CPSMV control measures should be aimed at delaying infection by CPSMV to minimize the impact on cowpea yield.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 569-574 ◽  
Author(s):  
John L. Lindquist ◽  
David A. Mortensen

Improved crop tolerance and weed suppressive ability are tactics that may reduce the negative effect of weeds on crop yield. Irrigated field experiments were conducted to compare leaf area index (LAI), intercepted photosynthetic photon flux (PPF), and relative tolerance and velvetleaf suppressive ability among two old (circa 1940) and two modern corn hybrids. Each hybrid was grown in monoculture and in mixture with velvetleaf at 1, 4, 16, and 40 plants m−1row. Plants were periodically harvested in monoculture plots to obtain estimates of corn LAI, and PPF interception was measured. Variation in hybrid tolerance to velvetleaf competition for light was evaluated by comparing among hybrids the coefficients of a regression of corn yield loss on velvetleaf density. Velvetleaf seed capsule production in the presence of each hybrid was compared to evaluate variation in velvetleaf suppressive ability among hybrids. Maximum corn yield loss was 32% lower for the two old hybrids, and velvetleaf capsule production was reduced by 62% at low velvetleaf densities in 1995 compared to the modern hybrids. In 1996, yield loss of the modern hybrid 3394 was 74% lower than that of the other three hybrids at low velvetleaf densities, whereas maximum yield loss of the old hybrid 336 was 44% lower at high densities. Velvetleaf capsule production did not vary among hybrids at any velvetleaf density in 1996. Hybrids with greater tolerance and velvetleaf suppressive ability also had greater LAI and PPF interception, suggesting optimized corn LAI and PPF interception may be useful in an integrated weed management program.


2010 ◽  
Vol 28 (3) ◽  
pp. 455-462 ◽  
Author(s):  
F. Vazin ◽  
M. Hassanzadeh ◽  
A. Madani ◽  
M. Nassiri-Mahallati ◽  
M. Nasri

The aim of this study was to model light interception and distribution in the mixed canopy of Common cocklebur (Xanthium stramarium) with corn. An experiment was conducted in factorial arrangement on the basis of randomized complete blocks design with three replications in Gonabad in 2006-2007 and 2007-2008 seasons. The factors used in this experiment include corn density of 7.5, 8.5 and 9.5 plants per meter of row and density of Common cocklebur of zero, 2, 4, 6 and 8 plants per meter of row. INTERCOM model was used through replacing parabolic function with triangular function of leaf area density. Vertical distribution of the species' leaf area showed that corn has concentrated the most leaf area in layer of 80 to 100 cm while Common cocklebur has concentrated in 35-50 cm of canopy height. Model sensitivity analysis showed that leaf area index, species' height, height where maximum leaf area is seen (hm), and extinction coefficient have influence on light interception rate of any species. In both species, the distribution density of leaf area at the canopy length fit a triangular function, and the height in which maximum leaf area was observed was changed by change in density. There was a correlation between percentage of the radiation absorbed by the weed and percentage of corn seed yield loss (r² = 0.89). Ideal type of corn was determined until the stage of tasseling in competition with weed. This determination indicates that the corn needs more height and leaf area, as well as less extinction coefficient to successfully fight against the weed.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 269 ◽  
Author(s):  
Guangzhou Liu ◽  
Yunshan Yang ◽  
Wanmao Liu ◽  
Xiaoxia Guo ◽  
Jun Xue ◽  
...  

Increasing planting density is an important practice associated with increases in maize yield, but densely planted maize can suffer from poor light conditions. In our two-year field experiments, two morphologically different cultivars, ZD958 (less compact) and DH618 (more compact), were planted at 120,000 plants ha−1 and 135,000 plants ha−1, respectively. We established different leaf area index (LAI) treatments by removing leaves three days after silking: (1) control, no leaves removed (D0); (2) the two uppermost leaves removed (D1); (3) the four uppermost leaves removed (D2); (4) the leaves below the third leaf below the ear removed (D3); (5) the leaves of D1 and D3 removed (D4); (6) the leaves of D2 and D3 removed (D5). Optimal leaf removal improved light distribution, increased photosynthetic capacity and the post-silking source-sink ratio, and thus the grain yield, with an average LAI of 5.9 (5.6 and 6.2 for ZD958 and DH618, respectively) for the highest yields in each year. Therefore, less-compact cultivars should have smaller or fewer topmost leaves or leaves below the ear that quickly senesce post-silking, so as to decrease leaf area and thus improve light distribution and photosynthetic capacity in the canopy under dense planting conditions. However, for more compact cultivars, leaves below the ear should senesce quickly after silking to reduce leaf respiration and improve the photosynthetic capacity of the remaining top residual leaves. In future maize cultivation, compact cultivars with optimal post-silking LAI should be adopted when planting densely.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6732
Author(s):  
Haixia Qi ◽  
Bingyu Zhu ◽  
Zeyu Wu ◽  
Yu Liang ◽  
Jianwen Li ◽  
...  

Leaf area index (LAI) is used to predict crop yield, and unmanned aerial vehicles (UAVs) provide new ways to monitor LAI. In this study, we used a fixed-wing UAV with multispectral cameras for remote sensing monitoring. We conducted field experiments with two peanut varieties at different planting densities to estimate LAI from multispectral images and establish a high-precision LAI prediction model. We used eight vegetation indices (VIs) and developed simple regression and artificial neural network (BPN) models for LAI and spectral VIs. The empirical model was calibrated to estimate peanut LAI, and the best model was selected from the coefficient of determination and root mean square error. The red (660 nm) and near-infrared (790 nm) bands effectively predicted peanut LAI, and LAI increased with planting density. The predictive accuracy of the multiple regression model was higher than that of the single linear regression models, and the correlations between Modified Red-Edge Simple Ratio Index (MSR), Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and LAI were higher than the other indices. The combined VI BPN model was more accurate than the single VI BPN model, and the BPN model accuracy was higher. Planting density affects peanut LAI, and reflectance-based vegetation indices can help predict LAI.


Weed Science ◽  
1984 ◽  
Vol 32 (4) ◽  
pp. 460-467 ◽  
Author(s):  
Russell S. Moomaw ◽  
Alex R. Martin

Season-long weed control has been a goal of some producers of irrigated corn (Zea maysL.) to reduce competition, lessen weed seed production, facilitate crop harvest, improve water efficiency (particularly with furrow irrigation), and improve aesthetic properties of fields. Field experiments were conducted for 3 yr on sprinkler-irrigated corn on a loamy fine sand. Five herbicides applied at layby generally provided season-long control of grass weeds and reduced weed seed production up to 100%. Pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine] was particularly effective. Yields of irrigated corn were not increased by layby herbicide application. Use of corn rows spaced 91 cm apart and use of a shorter, early-maturing, horizontal-leaf corn cultivar resulted in greater weed growth and weed seed production than did use of 76-cm rows and a taller, full-season, upright-leaf corn cultivar. After nearly complete weed control with herbicides for 2 yr, withholding herbicide use in the third year allowed weed growth which reduced corn yield. Indications were that weed control efforts need to be continuous in irrigated corn production.


Weed Science ◽  
2006 ◽  
Vol 54 (4) ◽  
pp. 735-742 ◽  
Author(s):  
Travis C. Gustafson ◽  
Stevan Z. Knezevic ◽  
Thomas E. Hunt ◽  
John L. Lindquist

An improved understanding of crop stress from multiple pests is needed for better implementation of integrated pest management (IPM) strategies. Field studies were conducted in 2003 and 2004 at two locations in eastern Nebraska to describe the effects of simulated early-season insect defoliation of soybean and duration of weed interference on soybean growth. Three levels of simulated defoliation (undefoliated, 30, and 60%) and seven durations of weed interference (weedy and weed free; weed removal at V2, V4, V6, R3, and R5) were evaluated in a split-plot design. Defoliation significantly reduced soybean leaf-area index (LAI), total dry matter (TDM), and crop height in season-long weedy treatments only. Biomass partitioning during vegetative and reproductive growth was affected by both defoliation and weed interference. Increase in soybean relative growth rate (RGR) and biomass production soon after defoliation occurred (e.g., V5 stage) indicated potential defense mechanism by which soybean is able to adjust its physiology in response to the loss of leaf area. Weed interference combined with defoliation caused the greatest yield losses up to 97%. Results from this study indicate the need for monitoring early-season insect density and weed growth to determine if simultaneous control of both pests may be needed.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 232
Author(s):  
Nangial Khan ◽  
Fangfang Xing ◽  
Lu Feng ◽  
Zhanbiao Wang ◽  
Minghua Xin ◽  
...  

The number of cotton plants grown per unit area has recently gained attention due to technology expense, high input, and seed cost. Yield consistency across a series of plant populations is an attractive cost-saving option. Field experiments were conducted to compare biomass accumulation, fiber quality, leaf area index, yield and yield components of cotton planted at various densities (D1, 1.5; D2, 3.3; D3, 5.1; D4, 6.9; D5, 8.7; and D6, 10.5 plants m−2). High planting density (D5) produced 21% and 28% more lint yield as compared to low planting density (D1) during both years, respectively. The highest seed cotton yield (4662 kg/ha) and lint yield (1763 kg/ha) were produced by high plant density (D5) while the further increase in the plant population (D6) decreased the yield. The increase in yield of D5 was due to more biomass accumulation in reproductive organs as compared to other treatments. The highest average (19.2 VA gm m−2 d−1) and maximum (21.8 VM gm m−2 d−1) rates of biomass were accumulated in reproductive structures. High boll load per leaf area and leaf area index were observed in high planting density as compared to low, while high dry matter partitioning was recorded in the lowest planting density as compared to other treatments. Plants with low density had 5% greater fiber length as compared to the highest plant density, while the fiber strength and micronaire value were 10% and 15% greater than the lowest plant density. Conclusively, plant density of 8.7 plants m−2 is a promising option for enhanced yield, biomass, and uniform fiber quality of cotton.


Sign in / Sign up

Export Citation Format

Share Document