Glyphosate and Multiple Herbicide Resistance in Common Waterhemp (Amaranthus rudis)Populations from Missouri

Weed Science ◽  
2008 ◽  
Vol 56 (4) ◽  
pp. 582-587 ◽  
Author(s):  
Travis R. Legleiter ◽  
Kevin W. Bradley

Field and greenhouse experiments were conducted to determine the level of glyphosate resistance in common waterhemp populations from Platte County (MO1) and Holt County, Missouri (MO2), and to determine the level and distribution of resistance to glyphosate, acetolactate synthase (ALS)–inhibiting herbicides, and protoporophyrinogen oxidase (PPO)–inhibiting herbicides across the MO1 site. Results from greenhouse experiments revealed that the MO1 and MO2 waterhemp populations were 19 and 9 times more resistant to glyphosate, respectively, than a susceptible waterhemp population. In field experiments, greater than 54% of waterhemp at the MO1 site survived 1.7 kg glyphosate ae ha−1(twice the labeled rate) 6 wk after treatment. Tank-mix combinations of ALS- and PPO-inhibiting herbicides with glyphosate also failed to provide complete control of the waterhemp population at the MO1 site. Collection and screening of seed from individual female waterhemp accessions revealed multiple resistance to glyphosate, ALS-, and PPO-inhibiting herbicides across the MO1 site. All 14 waterhemp accessions collected across the MO1 site exhibited greater than 65% survival to 2× rates of glyphosate and thifensulfuron, and these accessions were spread across a 5-km2(503-ha) area. Four waterhemp accessions collected across a 0.9-km2(87-ha) area also exhibited 26 to 38% survival to 2× rates of lactofen. The results from these experiments provide evidence and confirmation of the first glyphosate-resistant waterhemp population in the United States and reveal that multiple resistance to glyphosate, ALS-, and PPO-inhibiting herbicides can occur in waterhemp.

Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 789-794 ◽  
Author(s):  
Sarah Taylor Lovell ◽  
Loyd M. Wax ◽  
Michael J. Horak ◽  
Dallas E. Peterson

The incidence of weed resistance to acetolactate synthase (ALS) inhibiting herbicides has increased in the United States. In 1993, a population of ALS-resistant common waterhemp was discovered after two confirmed applications of an imidazolinone herbicide. Following another imazethapyr application in the glasshouse, the resistant biotype demonstrated 130-fold resistance to imazethapyr at the whole plant level. The concentration of imazethapyr required to inhibit the ALS activity by 50% was 520 times greater for the resistant biotype than the susceptible. Plants also demonstrated cross-resistance to the sulfonylureas, chlorimuron and thifensulfuron, at the whole plant and enzyme levels. This particular discovery is of concern due to the low number of applications of the selection agent (imazaquin 1989, imazethapyr 1992, and imazethapyr in the greenhouse) and the high degree of cross-resistance eliminating several options for weed control.


2017 ◽  
Vol 31 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Debalin Sarangi ◽  
Lowell D. Sandell ◽  
Greg R. Kruger ◽  
Stevan Z. Knezevic ◽  
Suat Irmak ◽  
...  

The evolution of glyphosate and acetolactate synthase (ALS) inhibitor-resistant common waterhemp in the Midwestern United States has reduced the number of effective POST herbicide options for management of this problem weed in glyphosate-resistant soybean. Moreover, common waterhemp emerges throughout the crop growing season, justifying the need to evaluate herbicide programs that provide season-long control. The objectives of this study were to compare POST-only and PRE followed by (fb) POST herbicide programs for control of glyphosate-resistant common waterhemp in glyphosate-resistant soybean. Field experiments were conducted in 2013 and 2014 in Dodge County, NE, in a field infested with glyphosate-resistant common waterhemp. Programs containing PRE herbicides resulted in ≥83% control of common waterhemp and densities of ≤35 plantsm–2at 21 d after PRE (DAPRE). Post-only herbicide programs resulted in <70% control and densities of 107 to 215 plants m–2at 14 d after early-POST (DAEPOST) treatment. PRE fb POST herbicide programs, including saflufenacil plus imazethapyr plus dimethenamid-P, sulfentrazone plus cloransulam, orS-metolachlor plus metribuzin, fb fomesafen plus glyphosate;S-metolachlor plus fomesafen fb acifluorfen plus glyphosate resulted in >90% control of glyphosate-resistant common waterhemp throughout the growing season, reduced density to ≤7plantsm–2, ≥92% biomass reduction, and soybean yield >2,200kg ha–1. Averaged across herbicide programs, common waterhemp control was 84%, and density was 15 plants m–2with PRE fb POST herbicide programs compared with 42% control, and density of 101 plants m–2with POST-only herbicide programs at harvest. Results of this study indicated that PRE fb POST herbicide programs with effective modes of action exist for season-long control of glyphosate-resistant common waterhemp in glyphosate-resistant soybean.


2017 ◽  
Vol 31 (1) ◽  
pp. 32-45 ◽  
Author(s):  
Amit J. Jhala ◽  
Lowell D. Sandell ◽  
Debalin Sarangi ◽  
Greg R. Kruger ◽  
Steven Z. Knezevic

Glyphosate-resistant (GR) common waterhemp has become a significant problem weed in Nebraska and several Midwestern states. Several populations of GR common waterhemp are also resistant to acetolactate synthase (ALS)-inhibiting herbicides, making them difficult to control with POST herbicides in GR soybean. Glufosinate-resistant (GFR) soybean is an alternate system for controlling GR common waterhemp, justifying the need for evaluating glufosinate-based herbicide programs. The objectives of this study were to compare POST-only herbicide programs (including one-pass and two-pass POST programs) with PRE followed by (fb) POST herbicide programs for control of GR common waterhemp in GFR soybean and their effect on common waterhemp density, biomass, and soybean yield. Field experiments were conducted in 2013 and 2014 near Fremont, NE in a grower’s field infested with GR common waterhemp. Glufosinate applied early- and late-POST provided 76% control of GR common waterhemp at 14 d after late-POST (DALPOST) compared with 93% control with a PRE fb POST program when averaged across treatments. The PRE application of chlorimuron plus thifensulfuron plus flumioxazin,S-metolachlor plus fomesafen or metribuzin, saflufenacil plus dimethenamid-P fb glufosinate provided ≥95% control of common waterhemp throughout the growing season, reduced common waterhemp density to ≤2.0 plants m─2, caused ≥94% biomass reduction, and led to 1,984 to 2,210 kg ha─1soybean yield. Averaged across treatments, the PRE fb POST program provided 82% common waterhemp control at soybean harvest, reduced density to 23 plants m─2at 14 DALPOST, and caused 86% biomass reduction and 1,803 kg ha─1soybean yield compared with 77% control, 99 plants m─2, 53% biomass reduction, and 1,190 kg ha─1yield with POST-only program. It is concluded that PRE fb POST programs with multiple effective modes of action are available for control of GR common waterhemp in GFR soybean.


2015 ◽  
Vol 29 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Debalin Sarangi ◽  
Lowell D. Sandell ◽  
Stevan Z. Knezevic ◽  
Jatinder S. Aulakh ◽  
John L. Lindquist ◽  
...  

Glyphosate-resistant common waterhemp is a difficult-to-control annual broadleaf weed that has become a serious management challenge for growers in Nebraska and other states in the United States. The objectives of this study were to confirm glyphosate-resistant common waterhemp in Nebraska by quantifying level of resistance in a dose-response study, and to determine the sensitivity and efficacy of POST soybean herbicides for controlling suspected glyphosate-resistant common waterhemp biotypes. Seeds of suspected glyphosate-resistant common waterhemp biotypes were collected from seven eastern Nebraska counties. Greenhouse dose-response experiments were conducted to evaluate the response of common waterhemp biotypes to nine rates of glyphosate (0 to 16×). Common waterhemp biotypes were 3- to 39-fold resistant to glyphosate depending on the biotype being investigated and the susceptible biotype used for comparison. Results of the POST soybean herbicides efficacy experiment suggested that glyphosate-resistant biotypes, except a biotype from Pawnee County, had reduced sensitivity to acetolactate synthase (ALS)–inhibiting herbicides (chlorimuron-ethyl, imazamox, imazaquin, imazethapyr, and thifensulfuron-methyl). Glufosinate and protoporphyrinogen oxidase (PPO)–inhibiting herbicides (acifluorfen, fluthiacet-methyl, fomesafen, and lactofen) provided ≥ 80% control of glyphosate-resistant common waterhemp at 21 d after treatment (DAT). This study confirmed the first occurrence of glyphosate-resistant common waterhemp in Nebraska, and also revealed reduced sensitivity to ALS-inhibiting herbicides in most of the biotypes tested in this study.


Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 460-468 ◽  
Author(s):  
Michael S. Bell ◽  
Aaron G. Hager ◽  
Patrick J. Tranel

In 2006 and 2007, farmers from two counties in Illinois reported failure to control waterhemp with glyphosate. Subsequent onsite field experiments revealed that the populations might be resistant to multiple herbicides. Greenhouse experiments therefore were conducted to confirm glyphosate resistance, and to test for multiple resistance to other herbicides, including atrazine, acifluorfen, lactofen, and imazamox. In glyphosate dose-response experiments, both populations responded similarly to a previously characterized glyphosate-resistant population (MO1). Both Illinois populations also demonstrated high frequencies of resistance to the acetolactate synthase (ALS) inhibitor, imazamox. Additionally, one of the populations demonstrated high frequencies of resistance to both atrazine and the protoporphyrinogen oxidase (PPO) inhibitor, lactofen. Furthermore, using combinations of sequential and tank-mix herbicide applications, individual plants resistant to herbicides spanning all four site-of-action groups were identified from one population. Molecular experiments were performed to provide an initial characterization of the resistance mechanisms and to provide confirmation of the presence of multiple resistance traits within the two populations. Both populations contained the W574L ALS mutation and the ΔG210 PPO mutation, previously shown to confer resistance to ALS and PPO inhibitors, respectively. Atrazine resistance in both populations is suspected to be metabolism-based, because a triazine target-site mutation was not identified. A P106S EPSPS mutation, previously reported to confer glyphosate resistance, was identified in one population. This mutation was identified in both resistant and sensitive plants from the population; however, and so more research is needed to determine the glyphosate-resistance mechanism(s). This is the first known case of a weed population in the United States possessing multiple resistance to herbicides from four site-of-action groups.


1997 ◽  
Vol 11 (1) ◽  
pp. 13-18 ◽  
Author(s):  
John R. R. Hinz ◽  
Micheal D. K. Owen

Research was initiated to determine (a) whether a common waterhemp population was resistant to acetolactate synthase (ALS) inhibiting herbicides, (b) the percentage of the population that was ALS-inhibitor resistant, (c) the resistance mechanism, and (d) the effectiveness of a whole plant assay to detect ALS-inhibitor resistance. ALS-inhibitor resistance was confirmed in a common waterhemp population near Davis City, IA. The Davis City common waterhemp population was cross resistant to both imidazolinone and sulfonylurea herbicides, but not to lactofen. Approximately 10% of the Davis City common waterhemp population was sensitive to a rate of imazaquin 4 times the normal field rate. Davis City common waterhemp isolated ALS was much less sensitive to imazaquin and primisulfuron inhibition than was grain amaranth or an ALS-sensitive common waterhemp isolated ALS. Imazaquin I50values were 366.4 and 3.4 μM for ALS isolated from Davis City common waterhemp and grain amaranth, respectively. Primisulfuron I50values were 3.6 and 0.007 μM for ALS isolated from Davis City common waterhemp and grain amaranth, respectively. A whole plant ALS assay was developed that allowed for much more rapid detection of an ALS-resistant species and used less plant material than a conventional ALS assay.


2015 ◽  
Vol 95 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Amit J. Jhala ◽  
Mayank S. Malik ◽  
John B. Willis

Jhala, A. J., Malik, M. S. and Willis, J. B. 2015. Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean. Can. J. Plant Sci. 95: 973–981. Acetochlor, an acetamide herbicide, has been used for many years for weed control in several crops, including soybean. Micro-encapsulated acetochlor has been recently registered for preplant (PP), pre-emergence (PRE), and post-emergence (POST) application in soybean in the United States. Information is not available regarding the sequential application of acetochlor for weed control and soybean tolerance. The objectives of this research were to determine the effect of application timing of micro-encapsulated acetochlor applied in tank-mixture with glyphosate in single or sequential applications for weed control in glyphosate-resistant soybean, and to determine its impact on soybean injury and yields. Field experiments were conducted at Clay Center, Nebraska, in 2012 and 2013, and at Waverly, Nebraska, in 2013. Acetochlor tank-mixed with glyphosate applied alone PP, PRE, or tank-mixed with flumioxazin, fomesafen, or sulfentrazone plus chlorimuron provided 99% control of common waterhemp, green foxtail, and velvetleaf at 15 d after planting (DAP); however, control declined to ≤40% at 100 DAP. Acetochlor tank-mixed with glyphosate applied PRE followed by early POST (V2 to V3 stage of soybean) or late POST (V4 to V5 stage) resulted in ≥90% control of common waterhemp and green foxtail, reduced weed density to ≤2 plants m−2 and biomass to ≤12 g m−2, and resulted in soybean yields >3775 kg ha−1. The sequential applications of glyphosate plus acetochlor applied PP followed by early POST or late POST resulted in equivalent weed control to the best herbicide combinations included in this study and soybean yield equivalent to the weed free control. Injury to soybean was <10% in each of the treatments evaluated. Micro-encapsulated acetochlor can be a good option for soybean growers for controlling grasses and small-seeded broadleaf weeds if applied in a PRE followed by POST herbicide program in tank-mixture with herbicides of other modes of action.


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 494-504 ◽  
Author(s):  
Vince M. Davis ◽  
Greg R. Kruger ◽  
Jeff M. Stachler ◽  
Mark M. Loux ◽  
William G. Johnson

Horseweed populations with mixtures of biotypes resistant to glyphosate and acetolactate synthase (ALS)–inhibiting herbicides as well as biotypes with multiple resistance to glyphosate + ALS-inhibiting herbicides have been documented in Indiana and Ohio. These biotypes are particularly problematic because ALS-inhibiting herbicides are commonly tank mixed with glyphosate to improve postemergence horseweed control in soybean. The objective of this research was to characterize the growth and seed production of horseweed populations with resistance to glyphosate or ALS-inhibiting herbicides, and multiple resistance to glyphosate + ALS-inhibiting herbicides. A four-herbicide by four-horseweed population factorial field experiment was conducted in the southeastern region of Indiana in 2007 and repeated in 2008. Four horseweed populations were collected from Indiana or Ohio and confirmed resistant to glyphosate, ALS inhibitors, both, or neither in greenhouse experiments. The four herbicide treatments were untreated, 0.84 kg ae ha−1glyphosate, 35 g ai ha−1cloransulam, and 0.84 kg ae ha−1glyphosate + 35 g ai ha−1cloransulam. Untreated plants from horseweed populations that were resistant to glyphosate, ALS-inhibiting, or multiple glyphosate + ALS-inhibiting herbicides produced similar amounts of biomass and seed compared to populations that were susceptible to those herbicides or combination of herbicides. Furthermore, aboveground shoot mass and seed production did not differ between treated and untreated plants.


2009 ◽  
Vol 23 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Travis R. Legleiter ◽  
Kevin W. Bradley ◽  
Raymond E. Massey

Field experiments were conducted in Platte County, Missouri, during 2006 and 2007 to evaluate PRE, POST, and PRE followed by (fb) POST herbicide programs for the control of glyphosate-resistant waterhemp in soybean. All PRE fb POST treatments resulted in at least 66 and 70% control of glyphosate-resistant waterhemp in 2006 and 2007, respectively. Control of glyphosate-resistant waterhemp was less than 23% with lactofen and acifluorfen in 2006, but at least 64% in 2007. Variability in control likely resulted from differences in trial locations and a population of protoporphyrinogen oxidase (PPO)–resistant waterhemp at the Platte County site in 2006 compared with 2007. In both years, glyphosate resulted in less than 23% control of glyphosate-resistant waterhemp and provided the least control of all herbicide programs. Programs containing PRE herbicides resulted in waterhemp densities of less than 5 plants/m2, whereas the POST glyphosate treatment resulted in 38 to 70 plants/m2. Waterhemp seed production was reduced at least 78% in all PRE fb POST programs, from 55 to 71% in POST programs containing lactofen and acifluorfen and by only 21% in the POST glyphosate treatment. Soybean yields corresponded to the level of waterhemp control achieved in both years, with the lowest yields resulting from programs that provided poorest waterhemp control. PRE applications ofS-metolachlor plus metribuzin provided one of the highest net incomes in both years and resulted in $271 to $340/ha greater net income than the glyphosate-only treatment. Collectively, the results from these experiments illustrate the effectiveness of PRE herbicides for the control of glyphosate-resistant waterhemp in glyphosate-resistant soybean and the inconsistency of PPO-inhibiting herbicides or PPO-inhibiting herbicide combinations for the control of waterhemp populations with multiple resistance to glyphosate and PPO-inhibiting herbicides.


Weed Science ◽  
2015 ◽  
Vol 63 (3) ◽  
pp. 596-603 ◽  
Author(s):  
Patrick E. McCullough ◽  
Jialin Yu ◽  
Donn G. Shilling ◽  
Mark A. Czarnota ◽  
Christopher R. Johnston

Broomsedge populations have increased substantially over the last decade on roadsides in Georgia. The invasiveness of this species might have resulted from imazapic use for bermudagrass growth regulation and the limited use of MSMA on roadsides. The objectives of this research were to evaluate (1) differential growth inhibition of bermudagrass and broomsedge to imazapic, (2) susceptibility of isolated acetolactate synthase (ALS) enzymes of bermudagrass and broomsedge to imazapic, (3) broomsedge control with tank mixtures of imazapic with MSMA, and (4) the influence of imazapic on absorption and translocation of14C-MSMA. In greenhouse experiments, imazapic reduced bermudagrass shoot biomass ~ 2 times more from the nontreated than broomsedge. Isolated ALS enzymes of bermudagrass were ~ 100 times more susceptible to inhibition by imazapic than broomsedge. In field experiments, imazapic provided no control of broomsedge, but MSMA alone controlled broomsedge 81% at 12 mo after initial treatments (MAIT). Broomsedge control was reduced to 45% when MSMA was tank mixed with imazapic at 12 MAIT. In laboratory experiments, imazapic tank mixtures did not reduce broomsedge absorption or translocation of14C-MSMA. Overall, bermudagrass is more susceptible to imazapic due to greater target-site inhibition than broomsedge. Results emphasize the importance of MSMA use for broomsedge control, but agronomists should avoid tank mixtures with imazapic to reduce potential antagonism.


Sign in / Sign up

Export Citation Format

Share Document