Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean

2015 ◽  
Vol 95 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Amit J. Jhala ◽  
Mayank S. Malik ◽  
John B. Willis

Jhala, A. J., Malik, M. S. and Willis, J. B. 2015. Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean. Can. J. Plant Sci. 95: 973–981. Acetochlor, an acetamide herbicide, has been used for many years for weed control in several crops, including soybean. Micro-encapsulated acetochlor has been recently registered for preplant (PP), pre-emergence (PRE), and post-emergence (POST) application in soybean in the United States. Information is not available regarding the sequential application of acetochlor for weed control and soybean tolerance. The objectives of this research were to determine the effect of application timing of micro-encapsulated acetochlor applied in tank-mixture with glyphosate in single or sequential applications for weed control in glyphosate-resistant soybean, and to determine its impact on soybean injury and yields. Field experiments were conducted at Clay Center, Nebraska, in 2012 and 2013, and at Waverly, Nebraska, in 2013. Acetochlor tank-mixed with glyphosate applied alone PP, PRE, or tank-mixed with flumioxazin, fomesafen, or sulfentrazone plus chlorimuron provided 99% control of common waterhemp, green foxtail, and velvetleaf at 15 d after planting (DAP); however, control declined to ≤40% at 100 DAP. Acetochlor tank-mixed with glyphosate applied PRE followed by early POST (V2 to V3 stage of soybean) or late POST (V4 to V5 stage) resulted in ≥90% control of common waterhemp and green foxtail, reduced weed density to ≤2 plants m−2 and biomass to ≤12 g m−2, and resulted in soybean yields >3775 kg ha−1. The sequential applications of glyphosate plus acetochlor applied PP followed by early POST or late POST resulted in equivalent weed control to the best herbicide combinations included in this study and soybean yield equivalent to the weed free control. Injury to soybean was <10% in each of the treatments evaluated. Micro-encapsulated acetochlor can be a good option for soybean growers for controlling grasses and small-seeded broadleaf weeds if applied in a PRE followed by POST herbicide program in tank-mixture with herbicides of other modes of action.

2021 ◽  
pp. 1-21
Author(s):  
Jose H. S. de Sanctis ◽  
Amit J. Jhala

Abstract Velvetleaf is an economically important weed in agronomic crops in Nebraska and the United States. Dicamba applied alone usually does not provide complete velvetleaf control, particularly when velvetleaf is greater than 15 cm tall. The objectives of this experiment were to evaluate the interaction of dicamba, fluthiacet-methyl, and glyphosate applied alone or in a mixture in two- or three-way combinations for velvetleaf control in dicamba/glyphosate-resistant (DGR) soybean and to evaluate whether velvetleaf height (≤ 12 cm or ≤ 20 cm) at the time of herbicide application influences herbicide efficacy, velvetleaf density, biomass, and soybean yield. Field experiments were conducted near Clay Center, Nebraska in 2019 and 2020. The experiment was arranged in a split-plot with velvetleaf height (≤ 12 cm or ≤ 20 cm) as the main plot treatment and herbicides as sub-plot treatment. Fluthiacet provided ≥ 94% velvetleaf control 28 d after treatment (DAT) and ≥ 96% biomass reduction regardless of application rate or velvetleaf height. Velvetleaf control was 31% to 74% at 28 DAT when dicamba or glyphosate was applied alone to velvetleaf ≤ 20 cm tall compared with 47% to 100% control applied to ≤ 12 cm tall plants. Dicamba applied alone to ≤ 20 cm tall velvetleaf provided < 75% control and < 87% biomass reduction 28 DAT compared with ≥ 90% control with dicamba at 560 g ae ha−1 + fluthiacet at 7.2 g ai ha−1 or glyphosate at 1,260 g ae ha−1. Dicmaba at 280 g ae ha−1 + glyphosate at 630 g ae ha−1 applied to ≤ 20 cm tall velvetleaf resulted in 86% control 28 DAT compared with the expected 99% control. The interaction of dicamba + fluthiacet + glyphosate was additive for velvetleaf control and biomass reduction regardless of application rate and velvetleaf height.


2020 ◽  
pp. 1-8
Author(s):  
Chandrima Shyam ◽  
Parminder S. Chahal ◽  
Amit J. Jhala ◽  
Mithila Jugulam

Abstract Glyphosate-resistant (GR) Palmer amaranth is a problematic, annual broadleaf weed in soybean production fields in Nebraska and many other states in the United States. Soybean resistant to 2,4-D, glyphosate, and glufosinate (Enlist E3TM) has been developed and was first grown commercially in 2019. The objectives of this research were to evaluate the effect of herbicide programs applied PRE, PRE followed by (fb) late-POST (LPOST), and early-POST (EPOST) fb LPOST on GR Palmer amaranth control, density, and biomass reduction, soybean injury, and yield. Field experiments were conducted near Carleton, NE, in 2018, and 2019 in a grower’s field infested with GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean. Sulfentrazone + cloransulam-methyl, imazethapyr + saflufenacil + pyroxasulfone, and chlorimuron ethyl + flumioxazin + metribuzin applied PRE provided 84% to 97% control of GR Palmer amaranth compared with the nontreated control 14 d after PRE. Averaged across herbicide programs, PRE fb 2,4-D and/or glufosinate, and sequential application of 2,4-D or glufosinate applied EPOST fb LPOST resulted in 92% and 88% control of GR Palmer amaranth, respectively, compared with 62% control with PRE-only programs 14 d after LPOST. Reductions in Palmer amaranth biomass followed the same trend; however, Palmer amaranth density was reduced 98% in EPOST fb LPOST programs compared with 91% reduction in PRE fb LPOST and 76% reduction in PRE-only programs. PRE fb LPOST and EPOST fb LPOST programs resulted in an average soybean yield of 4,478 and 4,706 kg ha−1, respectively, compared with 3,043 kg ha−1 in PRE-only programs. Herbicide programs evaluated in this study resulted in no soybean injury. The results of this research illustrate that herbicide programs are available for the management of GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean.


2010 ◽  
Vol 24 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Santiago M. Ulloa ◽  
Avishek Datta ◽  
Stevan Z. Knezevic

Propane flaming could be an effective alternative tool for weed control in organic cropping systems. However, response of major weeds to broadcast flaming must be determined to optimize its proper use. Therefore, field experiments were conducted at the Haskell Agricultural Laboratory, Concord, NE in 2007 and 2008 using six propane doses and four weed species, including green foxtail, yellow foxtail, redroot pigweed, and common waterhemp. Our objective was to describe dose–response curves for weed control with propane. Propane flaming response was evaluated at three different growth stages for each weed species. The propane doses were 0, 12, 31, 50, 68, and 87 kg ha−1. Flaming treatments were applied utilizing a custom-built flamer mounted on a four-wheeler (all-terrain vehicle) moving at a constant speed of 6.4 km h−1. The response of the weed species to propane flaming was evaluated in terms of visual ratings of weed control and dry matter recorded at 14 d after treatment. Weed species response to propane doses were described by log-logistic models relating propane dose to visual ratings or plant dry matter. Overall, response of the weed species to propane flaming varied among species, growth stages, and propane dose. In general, foxtail species were more tolerant than pigweed species. For example, about 85 and 86 kg ha−1were the calculated doses needed for 90% dry matter reduction in five-leaf green foxtail and four-leaf yellow foxtail compared with significantly lower doses of 68 and 46 kg ha−1of propane for five-leaf redroot pigweed and common waterhemp, respectively. About 90% dry matter reduction in pigweed species was achieved with propane dose ranging from 40 to 80 kg ha−1, depending on the growth stage when flaming was conducted. A similar dose of 40 to 60 kg ha−1provided 80% reduction in dry matter for both foxtail species when flaming was done at their vegetative growth stage. However, none of the doses we tested could provide 90% dry matter reduction in foxtail species at flowering stage. It is important to note that foxtail species started regrowing 2 to 3 wk after flaming. Broadcast flaming has potential for control or suppression of weeds in organic farming.


1969 ◽  
Vol 91 (3-4) ◽  
pp. 149-160
Author(s):  
Carlos J. Ruiz-Vargas ◽  
Elvin Román-Paoli ◽  
María de L. Lugo ◽  
Nelson Semidey

During 2002 and 2003, two field experiments were conducted at the Agricultural Experiment Station of Lajas to evaluate phytotoxicity and efficacy of weed control of oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene] and halosulfuron-methyl [methyl 5- [[(4,6-dimethoxy-2- pyrimidinyl)amino]carbonylaminosulfonyl]-3-chloro-1-methyl-1-H-pyrazole-4- carboxylate] applied on three different dates and at three rates after onion (Allium cepaL.) planting. In the first experiment, early applications of oxyfluorfen at 0.13 and 0.27 kg ai/ha at 5,10 and 15 days after onion emergence (DAE) were less phytotoxic (≤ 30%) than simultaneous applications of halosulfuron-methyl, which resulted 100% phytotoxic at 0.027 and 0.054 kg ai/ha. Ten days after each application the lowest weed density (seven plants per 0.5 m2) was obtained with the oxyfluorfen treatment at 15 DAE; however, twenty days later the lowest weed density (five plants per 0.5 m2) resulted from the application at 5 DAE. Greater weed densities were obtained with both rates of halosulfuron-methyl (≥52 plants per 0.5 m2), regardless of application timing. In the second experiment, the applications of halosulfuronmethyl at 35 DAE to plots previously treated with oxyfluorfen at 5, 10 and 15 DAE, caused severe damage (≥80%) to onion. In relation to weed control, the best combination of both herbicides was the application of oxyfluorfen at 10 DAE followed by halosulfuron-methyl at 35 DAE; however, this treatment was not significantly better than the application of oxyfluorfen alone at 10 DAE. The use of oxyfluorfen alone at 10 DAE resulted in higher onion yield and bulb number than any of the other herbicide treatments. Halosulfuronmethyl application reduced onion yield by more than 97%; therefore, the use of this herbicide in this crop should be avoided. Key words: weed density, phytotoxicity, herbicides in this crop should be avoided.


Author(s):  
Nathan Kleczewski ◽  
Andrew Kness ◽  
Alyssa Koehler

Double cropped soybeans are planted on approximately 1/3 of crop acres in the Chesapeake Bay region of the United States. Producers have asked if foliar fungicides are required to optimize yields in this region. We assessed the impacts of foliar fungicide application timing and row spacing on foliar disease, greenstem, and yield from 11 site years spanning 2017-2019. Foliar diseases only developed at rateable levels in one location. Fungicide application, regardless of timing, increased percent greenstem over non-treated controls. Fungicide application did not impact soybean yield. Yield was greater in 38.1 cm rows when compared to 19 cm rows. Our data do not support the use of foliar fungicides in double cropped soybean production in this region.


Weed Science ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 329-335 ◽  
Author(s):  
Kimberly D. Walsh ◽  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Saflufenacil/dimethenamid-P is a relatively new prepackaged herbicide mixture that has the potential to provide enhanced weed control in soybean when tank-mixed with reduced doses of imazethapyr. Six field experiments were conducted over a 3-yr period (2011, 2012, and 2013) near Ridgetown and Exeter, Ontario, Canada, to determine the dose of imazethapyr, applied PRE, that must be added to saflufenacil/dimethenamid-P (245 g ai ha−1) to provide effective weed control in soybean. The predicted dose of imazethapyr PRE for 80% control of common lambsquarters, common ragweed, green foxtail, and velvetleaf 8 wk after soybean emergence (WAE) was 66, 180, 137, and 48 g ai ha−1, respectively. In contrast, when tank-mixed with saflufenacil/dimethenamid-P (245 g ha−1), the dose of imazethapyr PRE needed for 80% control of common lambsquarters, common ragweed, green foxtail, and velvetleaf was reduced to 11, 80, 48, and 18 g ha−1, respectively. The control of common lambsquarters, common ragweed, green foxtail, and velvetleaf was improved by 21, 23, 34, and 27%, respectively when saflufenacil/dimethenamid-P (245 g ha−1) was added to imazethapyr PRE. Imazethapyr at 104 g ha−1resulted in soybean yield that was 95% of the weed-free control; however, when tank-mixed with saflufenacil/dimethenamid-P (245 g ha−1) only 54 g ha−1of imazethapyr was required for the same yield level. Based on this study, PRE application of saflufenacil/dimethenamid-P with reduced doses of imazethapyr has the potential to improve soybean yield and provide acceptable weed control (≥ 80%); however, the extent that imazethapyr dose can be reduced is dependent upon weed community composition.


2015 ◽  
Vol 29 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Ryan P. DeWerff ◽  
Shawn P. Conley ◽  
Jed B. Colquhoun ◽  
Vince M. Davis

Soybean planting has occurred earlier in the Midwestern United States in recent years; however, earlier planting subjects the crop to longer durations of weed interference. This may change the optimum timing of POST glyphosate applications, or increase the need for residual herbicides applied PRE to optimize yield. A field study was conducted in 2012 and 2013 near Arlington, WI to determine the effect of planting date, residual herbicide use, and POST glyphosate timing on weed control and soybean yield. Planting dates were late April, mid-May, and early June. A PRE application of sulfentrazone plus cloransulam was applied to half the plots following each planting date. Glyphosate was applied POST to all plots at the V1, V2, V4, or R1 soybean growth stage. Planting date and glyphosate timing did not affect soybean yield in this study. However, averaged across years, planting dates, and POST glyphosate timings, yield increased from 3,280 to 3,500 kg ha−1when a PRE herbicide with residual soil activity was used. In POST-only treatments, delaying the planting date to June decreased weed density at POST application timing from 127 to 5 plants m−2(96%) and from 205 to 42 plants m−2(80%) in 2012 and 2013, respectively. Where a PRE was used, total weed density at POST application timing was always less within planting date, and also declined from early to late planting date 26 to 3 plants m−2(89%) and 23 to 6 plants m−2(74%) in 2012 and 2013, respectively. In conclusion, both PRE herbicide use and delayed soybean planting were effective strategies to reduce the number of in-crop weeds exposed to POST glyphosate and should be considered as strategies to reduce the number of weeds exposed to POST herbicides for resistance management.


Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 541-545 ◽  
Author(s):  
Lawrence E. Steckel ◽  
Michael S. Defelice ◽  
Barry D. Sims

The interaction of reduced rates of bentazon, chlorimuron, imazaquin, and imazethapyr with cultivation for broadleaf weed control in soybeans was investigated in field experiments conducted at three sites in Missouri in 1987 and 1988. Single reduced-rate herbicide applications provided soybean yields equal to full rates although visual weed control was slightly lower. Sequential applications of all four herbicides at reduced rates provided weed control and soybean yields equal to full-rate applications. The number of velvetleaf plants m−2and seeds plant−1were not influenced by herbicide, herbicide rate, or application timing. Cultivation improved weed control and soybean yield and decreased late-season weed populations and seed production.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Nader Soltani ◽  
Lynette R. Brown ◽  
Peter H. Sikkema

Limited information exists on the efficacy of pethoxamid for annual grass and broadleaf control in corn and soybean in Ontario. A total of 10 field experiments (5 with corn and 5 with soybean) were conducted during 2015 to 2017 in Ontario, Canada, to compare the weed control efficacy of dimethenamid-P at 544 g·ai·ha−1, pethoxamid at 840 g·ai·ha−1, pyroxasulfone at 100 g·ai·ha−1, and S-metolachlor at 1050 g·ai·ha−1 applied preemergence (PRE). Reduced weed interference with pyroxasulfone and dimethenamid-P resulted in corn yield that was similar to the weed-free control; however, weed interference with pethoxamid and S-metolachlor reduced corn yield 28 and 33%, respectively. Reduced weed interference with pyroxasulfone resulted in soybean yield that was similar to the weed-free control; however, weed interference with pethoxamid, dimethenamid-P, and S-metolachlor reduced soybean yield 27, 27, and 30%, respectively. At 4 and 8 weeks after application (WAA), all VLCFA inhibitor herbicides (Group 15) provided excellent redroot pigweed control (90 to 99%) in corn. There were no differences in common ragweed control, density, and dry weight among the VLCFA inhibitor herbicide evaluated; pyroxasulfone provided highest numeric common ragweed control and lowest numeric density and dry weight. At 4 and 8 WAA, pyroxasulfone provided the best common lambsquarters and wild mustard control and lowest numeric density and dry weight in corn and soybean. At 8 WAA, the VLCFA inhibitor herbicides controlled green foxtail 91 to 96% in corn; dimethenamid-P provided better control of green foxtail than pethoxamid in soybean. There were no differences in barnyard grass control among the VLCFA inhibitor herbicides evaluated.


2006 ◽  
Vol 20 (3) ◽  
pp. 622-626 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman ◽  
John C. Frihauf

Field experiments were conducted during 2003 and 2004 to compare the effectiveness of KIH-485 and S-metolachlor for PRE weed control in no-tillage and conventional-tillage corn. Longspine sandbur control increased as KIH-485 or S-metolachlor rates increased in conventional-tillage corn, but control did not exceed 75% when averaged over experiments. Both herbicides controlled at least 87% of green foxtail with the exception of no-tillage corn in 2004, when KIH-485 was more effective than S-metolachlor at lower rates. Palmer amaranth control ranged from 85 to 100% in 2003 and 80 to 100% in 2004, with the exception of only 57 to 76% control at the lowest two S-metolachlor rates in 2004. Puncturevine control exceeded 94% with all treatments in 2003. In 2004, KIH-485 controlled 86 to 96% of the puncturevine, whereas S-metolachlor controlled only 70 to 81%. Mixtures of atrazine with KIH-485 or S-metolachlor generally provided the most effective control of broadleaf weeds studied.


Sign in / Sign up

Export Citation Format

Share Document