Phosphorus Fertilizer Application Method Affects Weed Growth and Competition with Wheat

Weed Science ◽  
2009 ◽  
Vol 57 (3) ◽  
pp. 311-318 ◽  
Author(s):  
Robert E. Blackshaw ◽  
Louis J. Molnar

Strategic fertilizer management is an important component of integrated weed management systems. A field study was conducted to determine the effect of various application methods of phosphorus (P) fertilizer on weed growth and wheat yield. Weed species were chosen to represent species that varied in their growth responsiveness to P: redroot pigweed (medium), wild mustard (medium), wild oat (medium), green foxtail (high), redstem filaree (high), and round-leaved mallow (high). P fertilizer application methods were seed placed at a 5-cm depth, midrow banded at a 10-cm depth, surface broadcast immediately before seeding, and surface broadcast immediately after seeding of wheat. An unfertilized control was included. P treatments were applied to the same plot in four consecutive years to determine annual and cumulative effects over years. Shoot P concentration and biomass of weeds were often lower with seed-placed or subsurface-banded P fertilizer compared with either surface-broadcast application method. This result occurred more frequently with the highly P-responsive weeds and was more evident in the latter study years. P application method had little effect on weed-free wheat yield but often had a large effect on weed-infested wheat yield. Seed-placed or midrow-banded P compared with surface-broadcast P fertilizer often resulted in higher yields when wheat was in the presence of competitive weeds. Seedbank determinations at the conclusion of the study indicated that the seed density of five of six weed species was reduced with seed-placed or subsurface-banded P compared with surface-broadcast P. Information gained in this study will aid development of more effective weed management systems in wheat.

Weed Science ◽  
2004 ◽  
Vol 52 (4) ◽  
pp. 614-622 ◽  
Author(s):  
Robert E. Blackshaw ◽  
Louis J. Molnar ◽  
H. Henry Janzen

Managing crop fertilization may be an important component of integrated weed management systems that protect crop yield and reduce weed populations over time. A field study was conducted to determine the effects of various timings and application methods of nitrogen (N) fertilizer on weed growth and spring wheat yield. Nitrogen fertilizer was applied the previous fall (October) or at planting (May) at a dose of 50 kg ha−1. Nitrogen application treatments consisted of granular ammonium nitrate applied broadcast on the soil surface, banded 10 cm deep between every crop row, banded 10 cm deep between every second crop row, or point-injected liquid ammonium nitrate placed between every second crop row at 20-cm intervals and 10 cm deep. Treatments were applied in 4 consecutive yr to determine annual and cumulative effects over years. Density and biomass of wild oat, green foxtail, wild mustard, and common lambsquarters were sometimes lower with spring- than with fall-applied N. Spring wheat yield was never lower and was higher in 50% of the cases, when N was spring rather than fall applied. Nitrogen application method generally had larger and more consistent effects than application timing on weed growth and wheat yield. Shoot N concentration and biomass of weeds were often lower with subsurface banded or point-injected N than with surface broadcast N, and concurrent increases in spring wheat yield usually occurred with these N placement treatments. Depending on the weed species, the weed seedbank at the conclusion of the 4-yr study was reduced by 25 to 63% with point-injected compared with broadcast N. Information gained in this study will contribute to the development of more integrated and cost-effective weed management programs in wheat.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Douglas D. Buhler ◽  
Robert G. Hartzler ◽  
Frank Forcella

The species composition and density of weed seed in the soil vary greatly and are closely linked to the cropping history of the land. Altering tillage practices changes weed seed depth in the soil, which plays a role in weed species shifts and affects efficacy of control practices. Crop rotation and weed control practices also affect the weed seedbank. Information on the influence of cropping practices on the weed seedbank should be a useful tool for integrated weed management. Decision aid models use information on the weed seedbank to estimate weed populations, crop yield loss, and recommend weed control tactics. Understanding the light requirements of weed seed may provide new approaches to weed management. Improving and applying our understanding of weed seedbank dynamics is essential to developing improved weed management systems. The principles of plant ecology must be integrated with the science of weed management to develop strategies that take advantage of basic plant responses in weed management systems for agronomic crops.


Weed Science ◽  
2005 ◽  
Vol 53 (4) ◽  
pp. 528-535 ◽  
Author(s):  
Robert E. Blackshaw ◽  
Hugh J. Beckie ◽  
Louis J. Molnar ◽  
Toby Entz ◽  
James R. Moyer

Development of more comprehensive and cost-effective integrated weed management systems is required to facilitate greater integrated weed management adoption by farmers. A field experiment was conducted at two locations to determine the combined effects of seed date (April or May), seed rate (recommended or 150% of recommended), fertilizer timing (applied in fall or spring), and in-crop herbicide dose (50% or 100% of recommended) on weed growth and crop yield. This factorial set of treatments was applied in four consecutive years within a spring wheat–spring canola–spring wheat–spring canola rotation in a zero-till production system. Both wheat and canola phases of the rotation were grown each year. Weed biomass was often lower with May than with April seeding because more weeds were controlled with preplant glyphosate. However, despite fewer weeds being present with May seeding, wheat yield was only greater in 1 of 7 site-years, and canola yield was never greater with May compared with April seeding. Higher crop seed rates had a consistently positive effect on reducing weed growth and the weed seedbank. Crop yield was sometimes greater, and never lower, with higher seed rates. Fertilizer timing did not have a large effect on crop yield, but applying N in the spring compared with fall was less favorable for weeds as indicated by lower weed biomass and a 20% decrease in the weed seedbank. In-crop herbicides applied at 50% compared with 100% doses often resulted in similar weed biomass and crop yield, especially when higher crop seed rates were used. Indeed, the weed seedbank at the conclusion of the 4-yr experiment was not greater with the 50% compared with 100% herbicide dose at one of two locations. This study demonstrates the combined merits of early seeding (April), higher crop seed rates, and spring-applied fertilizer in conjunction with timely but limited herbicide use to manage weeds and maintain high crop yields in rotations containing wheat and canola.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 682-688 ◽  
Author(s):  
Debalina Saha ◽  
S. Christopher Marble ◽  
Nelmaris Torres ◽  
Annette Chandler

AbstractWeed management in container crops is primarily accomplished through frequent PRE herbicide applications and supplemental hand weeding. However, many ornamental species are sensitive to herbicides, and a significant number of tropical plants, ornamental grasses, and foliage crops have not been screened for herbicide tolerance. As nursery crops are produced in inert substrates that are largely composed of bark or peat, strategic fertilizer placement has the potential to significantly reduce weed growth in container-grown ornamentals. Growth and reproduction of three common container nursery weed species, eclipta [Eclipta prostrata (L.) L.], large crabgrass [Digitaria sanguinalis (L.) Scop.], and spotted spurge (Euphorbia maculata L.), were evaluated following fertilization via alternative methods, including subdressing or dibbling in comparison with industry standard practices of topdressing or incorporating a controlled-release fertilizer (17-5-11 [8 to 9 mo.]) to each 3.8-L container at 36.5 g per container. Fertilizer placement had little to no effect on germination of Eclipta prostrata or D. sanguinalis, but incorporation increased E. maculata germination by 77% to 183% compared with other placements or a nonfertilized control. Subdressing reduced seed production by 94%, 63%, and 92% for Eclipta prostrata, D. sanguinalis, and E. maculata, respectively, compared with the average number of seeds produced in the conventional placement methods (average of incorporation and topdressing). Dibbling fertilizer resulted in similar decreases in the case of D. sanguinalis and E. maculata, while Eclipta prostrata produced no seeds when fertilizer was dibbled. Similar to reductions observed in reproduction, subdressing fertilizer resulted in biomass decreases of 90%, 81%, and 85% compared with the average biomass of the incorporation and topdressed placements. Results suggest alternative fertilizer placements could be implemented as part of an integrated weed management program in container production to reduce weed growth.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 595-603 ◽  
Author(s):  
Martin M. Williams ◽  
David A. Mortensen ◽  
John W. Doran

Cover crop residues are not widely used for weed control because, as a stand-alone tactic, they do not effectively suppress all weeds and their duration of weed control is too short. Field experiments were conducted in 1995 and 1996, under both irrigated and rainfed conditions, to quantifyAmaranthusspp.,Setariaspp., and soybean emergence and growth in residues of fall-planted, spring-killed barley, rye, triticale, wheat, and hairy vetch. For both weed species, seedling emergence was reduced 3 wk after soybean planting by rye and wheat residues (≥ 2, 170 kg ha−1) in 1996. In 1996,Amaranthusspp. canopy volume was reduced 38 to 71% by residues 3 wk after planting. Likewise,Setariaspp. canopy biomass was reduced 37 to 97% in residues 5 wk after planting over both years. The response comparison index was used to identify frequency by which weed growth was placed at a disadvantage relative to soybean growth.Amaranthusspp. andSetariaspp. growth suppressions 3 to 5 wk after planting indicate potential times for intervention with other integrated weed management tactics such as reduced postemergence herbicide rates and interrow cultivation.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


2021 ◽  
Vol 32 (5) ◽  
pp. 203-207
Author(s):  
M. Alejandro Garcia ◽  
Lucia V. Meneses ◽  
Tiago Edu Kaspary

Uruguayan agriculture has undergone dramatic changes in the last 50 years driven by the adoption of new agricultural production systems that incorporate zero tillage and herbicide resistant crops. This has resulted in a shift in weed species frequencies and the dispersion of introduced herbicide resistant weed populations. Finally, integrated weed management tools are being developed by research and extension services to manage herbicide-resistant (HR) weeds better and to reduce environmental impact of herbicides.


Sign in / Sign up

Export Citation Format

Share Document