Increased Purple Nutsedge (Cyperus rotundus) Tuber Sprouting with Diurnally Fluctuating Temperatures

Weed Science ◽  
2013 ◽  
Vol 61 (1) ◽  
pp. 126-130 ◽  
Author(s):  
Rebekah D. Wallace ◽  
Timothy L. Grey ◽  
Theodore M. Webster ◽  
William K. Vencill

Purple nutsedge is among the most troublesome weeds of vegetables in the Southeast US and a substantial impediment in the search for methyl bromide alternatives. Greater understanding of the environmental cues that regulate tuber sprouting may assist in improved nutsedge management. Experiments were conducted to evaluate the effect of diurnal temperature variation on sprouting of purple nutsedge tubers. Two temperature regimes were evaluated: the first averaged 28 C, with daily fluctuations ranging from 0 to 19.5 C; the second temperature regime averaged 16 C, with daily fluctuations ranging from 0 to 18.5 C. When average temperature was 28 C, cumulative tuber sprouting ranged from 88 to 92%, with no detectable differences among diurnal fluctuations. The high average temperature in the first study may have negated any type of enforced sprouting suppression. However, when average temperature was lowered to 16 C (simulating early spring diurnal fluctuations under polyethylene mulch), there was a positive linear correlation between maximum tuber sprouting and temperature variation. With an average temperature of 16 C, the absence of temperature variation resulted in 52% purple nutsedge sprouting, while 87% sprouting occurred when daily temperature varied 18.5 C at the same average temperature. The use of various types of mulching material can affect average soil temperatures and diurnal variations, potentially shifting nutsedge emergence. Further studies are needed to determine if these data on tuber sprouting in response to alternating temperatures can facilitate more efficient weed management.

Weed Science ◽  
1996 ◽  
Vol 44 (1) ◽  
pp. 122-125 ◽  
Author(s):  
Joel E. Miles ◽  
Roy K. Nishimoto ◽  
Osamu Kawabata

Experiments were conducted to determine the response of purple nutsedge tuber sprouting to diurnally alternating temperature. These experiments compared the response to alternating and constant temperatures and determined the effect of the amplitude of alternation and time of exposure to the maximum temperature. Tuber sprouting was more rapid and complete with alternating temperatures than with constant temperatures. Increasing temperature fluctuation from 0 to 6 C for 12 h daily linearly increased total tuber sprouting. As little as 30 min exposure to high temperature per day provided nearly the same level of sprouting as a 12 h alternating temperature cycle. This phenomenon should be considered when conducting studies to describe tuber temperature responses or when predicting tuber sprouting and emergence.


1999 ◽  
Vol 13 (3) ◽  
pp. 494-503 ◽  
Author(s):  
Leon S. Warren ◽  
Harold D. Coble

Field experiments were conducted in North Carolina from 1994 through 1998 to evaluate the effects of five weed management strategies and four corn (Zeamays)–peanut (Arachis hypogaea) rotation sequences on purple nutsedge (Cyperus rotundus) population development. Effects of these weed management programs on cotton (Gossypium hirsutum) and peanut production in following years were also investigated. Herbicide programs included a nontreated control, a carbamothioate preplant incorporated (PPI) combination treatment utilizing vernolate in peanut and butylate in corn, an early postemergence (EPOST) acetolactate synthase (ALS) inhibitor combination treatment utilizing imazapic in peanut and halosulfuron in corn, and EPOST treatments of imazapic and imazethapyr in both peanut and imidazolinone-resistant corn. Crop rotation sequences for the 3 yr included continuous corn (CCC), corn–peanut–corn (CPC), peanut–corn–peanut (PCP), and continuous peanut (PPP). The imazapic and ALS inhibitor combination treatments both provided excellent shoot and tuber control. After 3 yr, imazapic and the ALS inhibitor combination treatment reduced shoot and tuber population densities to less than 10% of the nontreated control. Imazethapyr provided variable but better control than the carbamothioate treatment with tuber densities (measured from 0 to 15 cm soil depth) and shoot densities increasing from 733 to 2,901 tubers/m3of soil and 16 to 43 shoots/m2, respectively, after 3 yr. Tuber densities increased in the nontreated control from 626 to 9,145 tubers/m3of soil and from 962 to 5,466 tubers/m3of soil in the carbamothioate treatment during this same period. Also, shoot densities increased in the nontreated control from 22 to 159 shoots/m2and from 8 to 92 shoots/m2in the carbamothioate treatment. There was a 31% peanut yield reduction from 1994 to 1996 when peanut was continuously planted or rotated to corn for only 1 yr. Herbicide carryover effects were not observed in cotton during 1997.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
J. IQBAL ◽  
S.T. ZAHRA ◽  
M. AHMAD ◽  
A.N. SHAH ◽  
W. HASSAN

ABSTRACT: In the current study the herbicidal potential of different dryland plant species to suppress tuber sprouting and growth in the purple nutsedge (Cyperus rotundus) was investigated. The plant species evaluated were Fagonia indica, Aerva javanica, Calotropis procera, Rhazya stricta and Withania coagulans. In a greenhouse experiment, 5 sprouted and 5 non-sprouted tubers of nutsedge were planted in pots containing 250g field-collected soil. Pots were irrigated regularly with aqueous extracts of test plants at five concentrations (0, 25, 50, 75 and 100%; original extract was concentrated 20 times and was considered as 100% concentrated and further concentrations were made accordingly). Extracts of all test plants significantly inhibited nutsedge tuber sprouting and growth. A significant interaction was observed between sprouting index (SI) and final sprouting percentage. While a non-significant interaction was observed between the timing of sprouting initiation and mean sprouting time (MST). Maximum reductions in SI and final sprouting percentage were recorded with Rhazya stricta extracts. Extracts of Rhazya stricta showed maximum suppressive potential of nutsedge density, root and shoot length, root and shoot fresh and dry weight. Overall, the least effective suppression of purple nutsedge was observed for extracts of Fagonia indica. Calotropis procera extracts resulted in the lowest reductions in nutsedge root length of all test plants but all test plants showed similar effects on timing of sprouting initiation and mean sprouting time. The 100% and 75% concentrations provided complete suppression of nutsedge. For all test plants, the 25% extract concentration was least effective and in some cases results were similar to the water-only control treatment. Our findings suggest that several dryland plant species with strong allelochemical properties have the potential to substantially reduce the deleterious impacts of purple nutsedge in dryland cropping systems and warrant further study.


Weed Research ◽  
2021 ◽  
Author(s):  
Sajad Mijani ◽  
Mehdi Rastgoo ◽  
Ali Ghanbari ◽  
Mehdi Nassiri Mahallati ◽  
José L. González‐Andújar

2021 ◽  
Vol 8 (1) ◽  
pp. 123-136
Author(s):  
Sajad Mijani ◽  
Mehdi Rastgoo ◽  
ALi Ghanbari ◽  
Mehdi Nassiri Mahallati ◽  
◽  
...  

2015 ◽  
Vol 25 (3) ◽  
pp. 335-339 ◽  
Author(s):  
Makhan S. Bhullar ◽  
Simerjeet Kaur ◽  
Tarundeep Kaur ◽  
Amit J. Jhala

Potato (Solanum tuberosum) is one of four major food crops in the world. Weed control is a major component in potato production and has been accomplished using different methods, including but not limited to the use of herbicides and straw mulch. A combination of preemergence herbicide and straw mulch may improve weed control; however, no information is available for combining both methods, along with their effects on weed control, weed density, and potato tuber yields. The objective of this study was to evaluate weed control in potato using atrazine or straw mulch applied alone at different rates or in combination. A field experiment was conducted for 4 years from 2006 to 2010 in Ludhiana, Punjab, India. Common weeds included burclover (Medicago arabica), common lambsquarters (Chenopodium album), littleseed canarygrass (Phalaris minor), purple nutsedge (Cyperus rotundus), scarlet pimpernel (Anagallis arvensis), swinecress (Coronopus didymus), and toothed dock (Rumex dentatus). Results suggested that atrazine applied alone was not very effective and resulted in 0% to 78% control depending on the weed species being investigated at 30 days after treatment (DAT). Straw mulch applied alone at any rate provided ≥90% control of toothed dock, but control of other weed species was variable. A combination of atrazine and straw mulch at any rate usually resulted in >90% weed control at 30 DAT, except for swinecress and purple nutsedge. This treatment combination also resulted in weed density as low as 0 plant/m2 for common lambsquarters, scarlet pimpernel, and toothed dock. Potato tuber weight and yield was significantly higher in all treatments compared with untreated control without difference among them. It is concluded that a combination of straw mulch and atrazine can provide effective weed control in potato.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 505A-505
Author(s):  
Carlene A. Chase ◽  
Rosalie L. Koenig ◽  
Jeffery E. Pack ◽  
Clinton C. Warren

Weed management is a major constraint of organic vegetable production and perennial weeds such as purple nutsedge (Cyperus rotundus) are particularly difficult to control. A study was initiated in 2005 to determine how summer fallow techniques impact purple nutsedge population density, tuber number and tuber viability; and to evaluate the impact of the treatments on the yields of two fall crops differing in canopy size and rate of development. Clean fallow treatments accomplished with weekly tillage or weekly flaming were conducted for 12 weeks. Two sets of summer cover crop treatments of sunn hemp (Crotalaria juncea) were established by broadcasting 40 lb of seed per acre and were undercut at 13 weeks after seeding. Cover crop residue was either incorporated before transplanting or retained on the surface as mulch for the fall crops of lettuce and broccoli. Soil solarization was initiated on 2 July and the transparent solarization film was maintained in place until mid-October. A weedy fallow treatment was included as a control, which was tilled before establishing the fall crops. Before the initiation of the summer fallow treatments, no difference in viable tubers or nutsedge shoot density was observed. After fallow, flaming had the highest number of viable tubers, with all other treatments similar to the weedy control. Nutsedge shoot density was suppressed by all fallow treatments to lower levels than with the weedy control, but solarization was the least effective. Leaf-cutting insects eliminated the crops in the sunn hemp mulch treatment within days of being transplanted. Lettuce stands with all other treatments were similar and greater than with the weedy control. Highest broccoli stands were obtained with flaming, solarization, and tillage; but broccoli stand with incorporated sunn hemp was similar to the weedy control. Highest lettuce yields occurred with incorporated sunn hemp, solarization, and weekly tillage. However, lettuce yields with flaming and the weedy control did not differ statistically. Broccoli yields were greatest with flaming, solarization, and tillage. Broccoli development was delayed with the weedy control and incorporated sunn hemp treatments and no significant yield was obtained.


Sign in / Sign up

Export Citation Format

Share Document