Long-Term Management of Palmer Amaranth (Amaranthus palmeri) in Dicamba-Tolerant Cotton

Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 161-169 ◽  
Author(s):  
Matthew D. Inman ◽  
David L. Jordan ◽  
Alan C. York ◽  
Katie M. Jennings ◽  
David W. Monks ◽  
...  

Research was conducted from 2011 to 2014 to determine weed population dynamics and frequency of glyphosate-resistant (GR) Palmer amaranth with herbicide programs consisting of glyphosate, dicamba, and residual herbicides in dicamba-tolerant cotton. Five treatments were maintained in the same plots over the duration of the experiment: three sequential POST applications of glyphosate with or without pendimethalin plus diuron PRE; three sequential POST applications of glyphosate plus dicamba with and without the PRE herbicides; and a POST application of glyphosate plus dicamba plus acetochlor followed by one or two POST applications of glyphosate plus dicamba without PRE herbicides. Additional treatments included alternating years with three sequential POST applications of glyphosate only and glyphosate plus dicamba POST with and without PRE herbicides. The greatest population of Palmer amaranth was observed when glyphosate was the only POST herbicide throughout the experiment. Although diuron plus pendimethalin PRE in a program with only glyphosate POST improved control during the first 2 yr, these herbicides were ineffective by the final 2 yr on the basis of weed counts from soil cores. The lowest population of Palmer amaranth was observed when glyphosate plus dicamba were applied regardless of PRE herbicides or inclusion of acetochlor POST. Frequency of GR Palmer amaranth was 8% or less when the experiment was initiated. Frequency of GR Palmer amaranth varied by herbicide program during 2012 but was similar among all herbicide programs in 2013 and 2014. Similar frequency of GR Palmer amaranth across all treatments at the end of the experiment most likely resulted from pollen movement from Palmer amaranth treated with glyphosate only to any surviving female plants regardless of PRE or POST treatment. These data suggest that GR Palmer amaranth can be controlled by dicamba and that dicamba is an effective alternative mode of action to glyphosate in fields where GR Palmer amaranth exists.

cftm ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. cftm2017.03.0017
Author(s):  
Matthew D. Inman ◽  
David L. Jordan ◽  
Alan C. York ◽  
Katie M. Jennings ◽  
David W. Monks

Weed Science ◽  
2019 ◽  
Vol 67 (1) ◽  
pp. 126-135 ◽  
Author(s):  
Nicholas E. Korres ◽  
Jason K. Norsworthy ◽  
Andy Mauromoustakos

AbstractInformation about weed biology and weed population dynamics is critical for the development of efficient weed management programs. A field experiment was conducted in Fayetteville, AR, during 2014 and 2015 to examine the effects of Palmer amaranth (Amaranthus palmeriS. Watson) establishment time in relation to soybean [Glycine max(L.) Merr.] emergence and the effects ofA. palmeridistance from the soybean row on the weed’s height, biomass, seed production, and flowering time and on soybean yield. The establishment time factor, in weeks after crop emergence (WAE), was composed of six treatment levels (0, 1, 2, 4, 6, and 8 WAE), whereas the distance from the crop consisted of three treatment levels (0, 24, and 48 cm). Differences inA. palmeribiomass and seed production averaged across distance from the crop were found at 0 and 1 WAE in both years. Establishment time had a significant effect onA. palmeriseed production through greater biomass production and height increases at earlier dates.Amaranthus palmerithat was established with the crop (0 WAE) overtopped soybean at about 7 and 10 WAE in 2014 and 2015, respectively. Distance from the crop affectedA. palmeriheight, biomass, and seed production. The greater the distance from the crop, the higherA. palmeriheight, biomass, and seed production at 0 and 1 WAE compared with other dates (i.e., 2, 4, 6, and 8 WAE).Amaranthus palmeriestablishment time had a significant impact on soybean yield, but distance from the crop did not. The earlierA. palmeriinterfered with soybean (0 and 1 WAE), the greater the crop yield reduction; after that period no significant yield reductions were recorded compared with the rest of the weed establishment times. Knowledge ofA. palmeriresponse, especially at early stages of its life cycle, is important for designing efficient weed management strategies and cropping systems that can enhance crop competitiveness. Control ofA. palmeriwithin the first week after crop emergence or reduced distance between crop and weed are important factors for an effective implementation of weed management measures againstA. palmeriand reduced soybean yield losses due to weed interference.


2020 ◽  
pp. 1-8
Author(s):  
Chandrima Shyam ◽  
Parminder S. Chahal ◽  
Amit J. Jhala ◽  
Mithila Jugulam

Abstract Glyphosate-resistant (GR) Palmer amaranth is a problematic, annual broadleaf weed in soybean production fields in Nebraska and many other states in the United States. Soybean resistant to 2,4-D, glyphosate, and glufosinate (Enlist E3TM) has been developed and was first grown commercially in 2019. The objectives of this research were to evaluate the effect of herbicide programs applied PRE, PRE followed by (fb) late-POST (LPOST), and early-POST (EPOST) fb LPOST on GR Palmer amaranth control, density, and biomass reduction, soybean injury, and yield. Field experiments were conducted near Carleton, NE, in 2018, and 2019 in a grower’s field infested with GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean. Sulfentrazone + cloransulam-methyl, imazethapyr + saflufenacil + pyroxasulfone, and chlorimuron ethyl + flumioxazin + metribuzin applied PRE provided 84% to 97% control of GR Palmer amaranth compared with the nontreated control 14 d after PRE. Averaged across herbicide programs, PRE fb 2,4-D and/or glufosinate, and sequential application of 2,4-D or glufosinate applied EPOST fb LPOST resulted in 92% and 88% control of GR Palmer amaranth, respectively, compared with 62% control with PRE-only programs 14 d after LPOST. Reductions in Palmer amaranth biomass followed the same trend; however, Palmer amaranth density was reduced 98% in EPOST fb LPOST programs compared with 91% reduction in PRE fb LPOST and 76% reduction in PRE-only programs. PRE fb LPOST and EPOST fb LPOST programs resulted in an average soybean yield of 4,478 and 4,706 kg ha−1, respectively, compared with 3,043 kg ha−1 in PRE-only programs. Herbicide programs evaluated in this study resulted in no soybean injury. The results of this research illustrate that herbicide programs are available for the management of GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean.


2016 ◽  
Vol 30 (2) ◽  
pp. 415-422 ◽  
Author(s):  
Matthew S. Wiggins ◽  
Robert M. Hayes ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic in cotton-producing areas of the midsouthern region of the United States. Growers rely heavily on PRE residual herbicides to control Palmer amaranth since few effective POST options exist. Interest in integrating high-residue cover crops with existing herbicide programs to combat GR weeds has increased. Research was conducted in 2013 and 2014 in Tennessee to evaluate GR Palmer amaranth control when integrating cover crops and PRE residual herbicides. Cereal rye, crimson clover, hairy vetch, winter wheat, and combinations of one grass plus one legume were compared with winter weeds without a cover crop followed by fluometuron or acetochlor applied PRE. Biomass of cover crops was determined prior to termination 3 wk before planting. Combinations of grass and legume cover crops accumulated the most biomass (> 3,500 kg ha−1) but by 28 d after application (DAA) the cereal rye and wheat provided the best Palmer amaranth control. Crimson clover and hairy vetch treatments had the greatest number of Palmer amaranth. These cereal and legume blends reduced Palmer amaranth emergence by half compared to non–cover-treated areas. Fluometuron and acetochlor controlled Palmer amaranth 95 and 89%, respectively, at 14 DAA and 54 and 62%, respectively, at 28 DAA. Cover crops in combination with a PRE herbicide did not adequately control Palmer amaranth.


2016 ◽  
Vol 30 (2) ◽  
pp. 366-376 ◽  
Author(s):  
M. Ryan Miller ◽  
Jason K. Norsworthy

Two separate field experiments were conducted over a 2-yr period in Fayetteville, AR, during 2012 and 2013 to (1) evaluate POST herbicide programs utilizing a premixture of dimethylamine (DMA) salt of glyphosate + choline salt of 2,4-D in a soybean line resistant to 2,4-D, glyphosate, and glufosinate and (2) determine efficacy of herbicide programs that begin with PRE residual herbicides followed by POST applications of 2,4-D choline + glyphosate DMA on glyphosate-resistant Palmer amaranth. In the first experiment, POST applications alone that incorporated the use of residual herbicides with the glyphosate + 2,4-D premixture provided 93 to 99% control of Palmer amaranth at the end of the season. In the second experiment, the use of flumioxazin, flumioxazin + chlorimuron methyl, S-metolachlor + fomesafen, or sulfentrazone + chloransulam applied PRE provided 94 to 98% early-season Palmer amaranth control. Early-season control helped maintain a high level of Palmer amaranth control throughout the growing season, in turn resulting in fewer reproductive Palmer amaranth plants present at soybean harvest compared to most other treatments. Although no differences in soybean yield were observed among treated plots, it was evident that herbicide programs should begin with PRE residual herbicides followed by POST applications of glyphosate + 2,4-D mixed with residual herbicides to minimize late-season escapes and reduce the likelihood of contributions to the soil seedbank. Dependent upon management decisions, the best stewardship of this technology will likely rely on the use multiple effective mechanisms of action incorporated into a fully integrated weed management system.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Michael M. Houston ◽  
L. Tom Barber ◽  
Jason K. Norsworthy ◽  
Trent L. Roberts

Protoporphyrinogen oxidase- (PPO-) resistant Amaranthus palmeri (S.) Wats. (Palmer amaranth) was confirmed in Arkansas in 2015. Field trials were conducted in Crawfordsville, Gregory, and Marion, Arkansas in 2016, and Crawfordsville and Marion in 2017, assessing PPO-resistant Palmer amaranth control options in Glycine max (L.) Merr. (soybean). Twelve trials consisted of 26 preemergence (PRE) treatments, evaluated for Palmer amaranth control and density reduction at 28 days after treatment (DAT). Treatments that consisted of PPO- or acetolactate synthase- (ALS-) inhibiting herbicides such as flumioxazin (72 g ai ha−1) or sulfentrazone + cloransulam (195 g ha−1 + 25 g ha−1) controlled Palmer amaranth <60%. At 28 DAT, treatments including mixtures of a very-long-chain fatty acid (VLCFA) plus the photosystem II- (PSII-) inhibiting herbicide metribuzin provided increased control over single herbicide sites of action (SOA) or herbicides mixtures to which Palmer amaranth was resistant. Pyroxasulfone + metribuzin (149 g ha−1 + 314 g ha−1) controlled Palmer amaranth 91% control across twelve trials at 28 DAT. S-metolachlor alone did not provide consistent, acceptable control of PPO-resistant Palmer amaranth (55–77%); subsequent research has determined that these populations are resistant to S-metolachlor. A minimum of two effective herbicides should be included in soybean PRE programs for control of PPO-resistant Palmer amaranth.


2015 ◽  
Vol 29 (4) ◽  
pp. 716-729 ◽  
Author(s):  
Christopher J. Meyer ◽  
Jason K. Norsworthy ◽  
Bryan G. Young ◽  
Lawrence E. Steckel ◽  
Kevin W. Bradley ◽  
...  

Herbicide-resistantAmaranthusspp. continue to cause management difficulties in soybean. New soybean technologies under development, including resistance to various combinations of glyphosate, glufosinate, dicamba, 2,4-D, isoxaflutole, and mesotrione, will make possible the use of additional herbicide sites of action in soybean than is currently available. When this research was conducted, these soybean traits were still regulated and testing herbicide programs with the appropriate soybean genetics in a single experiment was not feasible. Therefore, the effectiveness of various herbicide programs (PRE herbicides followed by POST herbicides) was evaluated in bare-ground experiments on glyphosate-resistant Palmer amaranth and glyphosate-resistant waterhemp (both tall and common) at locations in Arkansas, Illinois, Indiana, Missouri, Nebraska, and Tennessee. Twenty-five herbicide programs were evaluated; 5 of which were PRE herbicides only, 10 were PRE herbicides followed by POST herbicides 3 to 4 wks after (WA) the PRE application (EPOST), and 10 were PRE herbicides followed by POST herbicides 6 to 7 WA the PRE application (LPOST). Programs with EPOST herbicides provided 94% or greater control of Palmer amaranth and waterhemp at 3 to 4 WA the EPOST. Overall, programs with LPOST herbicides resulted in a period of weed emergence in which weeds would typically compete with a crop. Weeds were not completely controlled with the LPOST herbicides because weed sizes were larger (≥ 15 cm) compared with their sizes at the EPOST application (≤ 7 cm). Most programs with LPOST herbicides provided 80 to 95% control at 3 to 4 WA applied LPOST. Based on an orthogonal contrast, using a synthetic-auxin herbicide LPOST improves control of Palmer amaranth and waterhemp over programs not containing a synthetic-auxin LPOST. These results show herbicides that can be used in soybean and that contain auxinic- or HPPD-resistant traits will provide growers with an opportunity for better control of glyphosate-resistant Palmer amaranth and waterhemp over a wide range of geographies and environments.


2016 ◽  
Vol 30 (3) ◽  
pp. 611-616 ◽  
Author(s):  
Whitney D. Crow ◽  
Lawrence E. Steckel ◽  
Thomas C. Mueller ◽  
Robert M. Hayes

Palmer amaranth is a very problematic weed that has evolved resistance to several classes of herbicides, including 5-enolypyruvylshikimate-3-phosate synthase–inhibiting herbicides and photosystem II–inhibiting herbicides. In recent years, corn producers have had difficulty controlling large Palmer amaranth (> 20 cm) in corn > 30 cm whether it be due to environmental conditions or management failures. Palmer amaranth management in corn this tall is made even more challenging because atrazine is not labeled POST in corn > 30 cm tall. Therefore, a study was conducted in 2013 and 2014 in Jackson, TN, to evaluate herbicide programs in corn > 30 cm tall for the control of glyphosate-resistant Palmer amaranth > 20 cm tall. Treatments consisted of herbicides applied alone and in mixtures with dicamba plus diflufenzopyr. Herbicides were applied POST to corn between the V5 and V6 growth stages. Dicamba plus diflufenzopyr 28 d after application controlled Palmer amaranth > 87%. The herbicides alone or in combinations applied as tank mixtures did not improve control (< 76%) over dicamba plus diflufenzopyr alone. There were no grain-yield differences among treatments because of Palmer amaranth control. This was likely due to the Palmer amaranth competition having already affected corn yield by the V5 to V6 corn growth stages.


2020 ◽  
pp. 1-8
Author(s):  
Vipan Kumar ◽  
Rui Liu ◽  
Dallas E. Peterson ◽  
Phillip W. Stahlman

Abstract Field experiments were conducted in 2018 and 2019 at Kansas State University Ashland Bottoms (KSU-AB) research farm near Manhattan, KS, and Kansas State University Agricultural Research Center (KSU-ARC) near Hays, KS, to determine the effectiveness of various PRE-applied herbicide premixes and tank mixtures alone or followed by (fb) an early POST (EPOST) treatment of glyphosate + dicamba for controlling glyphosate-resistant (GR) Palmer amaranth in glyphosate/dicamba-resistant (GDR) soybean. In experiment 1, PRE-applied sulfentrazone + S-metolachlor, saflufenacil + imazethapyr + pyroxasulfone, chlorimuron + flumioxazin + pyroxasulfone, and metribuzin + flumioxazin + imazethapyr provided 85% to 94% end-of-season control of GR Palmer amaranth across both sites. In comparison, Palmer amaranth control ranged from 63% to 87% at final evaluation with PRE-applied pyroxasulfone + sulfentrazone, pyroxasulfone + sulfentrazone plus metribuzin, pyroxasulfone + sulfentrazone plus carfentrazone + sulfentrazone, and sulfentrazone + metribuzin at the KSU-ARC site in experiment 2. All PRE fb EPOST (i.e., two-pass) programs provided near-complete (98% to 100%) control of GR Palmer amaranth at both sites. PRE-alone programs reduced Palmer amaranth shoot biomass by 35% to 76% in experiment 1 at both sites, whereas all two-pass programs prevented Palmer amaranth biomass production. No differences in soybean yields were observed among tested programs in experiment 1 at KSU-ARC site; however, PRE-alone sulfentrazone + S-metolachlor, saflufenacil + imazethapyr + pyroxasulfone, and chlorimuron + flumioxazin + pyroxasulfone had lower grain yield (average, 4,342 kg ha−1) compared with the top yielding (4,832 kg ha−1) treatment at the KSU-AB site. PRE-applied sulfentrazone + metribuzin had a lower soybean yield (1,776 kg ha−1) compared with all other programs in experiment 2 at the KSU-ARC site. These results suggest growers should proactively adopt effective PRE-applied premixes fb EPOST programs evaluated in this study to reduce selection pressure from multiple POST dicamba applications for GR Palmer amaranth control in GDR soybean.


Sign in / Sign up

Export Citation Format

Share Document