scholarly journals Evaluation of Preemergence Herbicide Programs for Control of Protoporphyrinogen Oxidase-Resistant Amaranthus palmeri in Soybean

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Michael M. Houston ◽  
L. Tom Barber ◽  
Jason K. Norsworthy ◽  
Trent L. Roberts

Protoporphyrinogen oxidase- (PPO-) resistant Amaranthus palmeri (S.) Wats. (Palmer amaranth) was confirmed in Arkansas in 2015. Field trials were conducted in Crawfordsville, Gregory, and Marion, Arkansas in 2016, and Crawfordsville and Marion in 2017, assessing PPO-resistant Palmer amaranth control options in Glycine max (L.) Merr. (soybean). Twelve trials consisted of 26 preemergence (PRE) treatments, evaluated for Palmer amaranth control and density reduction at 28 days after treatment (DAT). Treatments that consisted of PPO- or acetolactate synthase- (ALS-) inhibiting herbicides such as flumioxazin (72 g ai ha−1) or sulfentrazone + cloransulam (195 g ha−1 + 25 g ha−1) controlled Palmer amaranth <60%. At 28 DAT, treatments including mixtures of a very-long-chain fatty acid (VLCFA) plus the photosystem II- (PSII-) inhibiting herbicide metribuzin provided increased control over single herbicide sites of action (SOA) or herbicides mixtures to which Palmer amaranth was resistant. Pyroxasulfone + metribuzin (149 g ha−1 + 314 g ha−1) controlled Palmer amaranth 91% control across twelve trials at 28 DAT. S-metolachlor alone did not provide consistent, acceptable control of PPO-resistant Palmer amaranth (55–77%); subsequent research has determined that these populations are resistant to S-metolachlor. A minimum of two effective herbicides should be included in soybean PRE programs for control of PPO-resistant Palmer amaranth.

Weed Science ◽  
2020 ◽  
Vol 68 (6) ◽  
pp. 582-593
Author(s):  
Denis J. Mahoney ◽  
David L. Jordan ◽  
Nilda Roma-Burgos ◽  
Katherine M. Jennings ◽  
Ramon G. Leon ◽  
...  

AbstractPalmer amaranth (Amaranthus palmeri S. Watson) populations resistant to acetolactate synthase (ALS)-inhibiting herbicides and glyphosate are fairly common throughout the state of North Carolina (NC). This has led farm managers to rely more heavily on herbicides with other sites of action (SOA) for A. palmeri control, especially protoporphyrinogen oxidase and glutamine synthetase inhibitors. In the fall of 2016, seeds from A. palmeri populations were collected from the NC Coastal Plain, the state’s most prominent agricultural region. In separate experiments, plants with 2 to 4 leaves from the 110 populations were treated with field use rates of glyphosate, glufosinate-ammonium, fomesafen, mesotrione, or thifensulfuron-methyl. Percent visible control and survival were evaluated 3 wk after treatment. Survival frequencies were highest following glyphosate (99%) or thifensulfuron-methyl (96%) treatment. Known mutations conferring resistance to ALS inhibitors were found in populations surviving thifensulfuron-methyl application (Ala-122-Ser, Pro-197-Ser, Trp-574-Leu, and/or Ser-653-Asn), in addition to a new mutation (Ala-282-Asp) that requires further investigation. Forty-two populations had survivors after mesotrione application, with one population having 17% survival. Four populations survived fomesafen treatment, while none survived glufosinate. Dose–response studies showed an increase in fomesafen needed to kill 50% of two populations (LD50); however, these rates were far below the field use rate (less than 5 g ha−1). In two populations following mesotrione dose–response studies, a 2.4- to 3.3-fold increase was noted, with LD90 values approaching the field use rate (72.8 and 89.8 g ha−1). Screening of the progeny of individuals surviving mesotrione confirmed the presence of resistance alleles, as there were a higher number of survivors at the 1X rate compared with the parent population, confirming resistance to mesotrione. These data suggest A. palmeri resistant to chemistries other than glyphosate and thifensulfuron-methyl are present in NC, which highlights the need for weed management approaches to mitigate the evolution and spread of herbicide-resistant populations.


2019 ◽  
Vol 33 (5) ◽  
pp. 720-726 ◽  
Author(s):  
Chad Brabham ◽  
Jason K. Norsworthy ◽  
Michael M. Houston ◽  
Vijay K Varanasi ◽  
Tom Barber

AbstractS-Metolachlor is commonly used by soybean and cotton growers, especially with POST treatments for overlapping residuals, to obtain season-long control of glyphosate- and acetolactate synthase (ALS)–resistant Palmer amaranth. In Crittenden County, AR, reports of Palmer amaranth escapes following S-metolachlor treatment were first noted at field sites near Crawfordsville and Marion in 2016. Field and greenhouse experiments were conducted to confirm S-metolachlor resistance and to test for cross-resistance to other very-long-chain fatty acid (VLCFA)–inhibiting herbicides in Palmer amaranth accessions from Crawfordsville and Marion. Palmer amaranth control in the field (soil <3% organic matter) 14 d after treatment (DAT) was ≥94% with a 1× rate of acetochlor (1,472 g ai ha–1; emulsifiable concentrate formulation) and dimethenamid-P (631 g ai ha–1). However, S-metolachlor at 1,064 g ai ha–1 provided only 76% control, which was not significantly different from the 1/2× and 1/4× rates of dimethenamid-P and acetochlor (66% to 85%). In the greenhouse, Palmer amaranth accessions from Marion and Crawfordsville were 9.8 and 8.3 times more resistant to S-metolachlor compared with two susceptible accessions based on LD50 values obtained from dose–response experiments. Two-thirds and 1.5 times S-metolachlor at 1,064 g ha–1 were the estimated rates required to obtain 90% mortality of the Crawfordsville and Marion accessions, respectively. Data collected from the field and greenhouse confirm that these accessions have evolved a low level of resistance to S-metolachlor. In an agar-based assay, the level of resistance in the Marion accession was significantly reduced in the presence of a glutathione S-transferase (GST) inhibitor, suggesting that GSTs are the probable resistance mechanism. With respect to other VLCFA-inhibiting herbicides, Marion and Crawfordsville accessions were not cross-resistant to acetochlor, dimethenamid-P, or pyroxasulfone. However, both accessions, based on LD50 values obtained from greenhouse dose–response experiments, exhibited reduced sensitivity (1.5- to 3.6-fold) to the tested VLCFA-inhibiting herbicides.


2015 ◽  
Vol 29 (4) ◽  
pp. 716-729 ◽  
Author(s):  
Christopher J. Meyer ◽  
Jason K. Norsworthy ◽  
Bryan G. Young ◽  
Lawrence E. Steckel ◽  
Kevin W. Bradley ◽  
...  

Herbicide-resistantAmaranthusspp. continue to cause management difficulties in soybean. New soybean technologies under development, including resistance to various combinations of glyphosate, glufosinate, dicamba, 2,4-D, isoxaflutole, and mesotrione, will make possible the use of additional herbicide sites of action in soybean than is currently available. When this research was conducted, these soybean traits were still regulated and testing herbicide programs with the appropriate soybean genetics in a single experiment was not feasible. Therefore, the effectiveness of various herbicide programs (PRE herbicides followed by POST herbicides) was evaluated in bare-ground experiments on glyphosate-resistant Palmer amaranth and glyphosate-resistant waterhemp (both tall and common) at locations in Arkansas, Illinois, Indiana, Missouri, Nebraska, and Tennessee. Twenty-five herbicide programs were evaluated; 5 of which were PRE herbicides only, 10 were PRE herbicides followed by POST herbicides 3 to 4 wks after (WA) the PRE application (EPOST), and 10 were PRE herbicides followed by POST herbicides 6 to 7 WA the PRE application (LPOST). Programs with EPOST herbicides provided 94% or greater control of Palmer amaranth and waterhemp at 3 to 4 WA the EPOST. Overall, programs with LPOST herbicides resulted in a period of weed emergence in which weeds would typically compete with a crop. Weeds were not completely controlled with the LPOST herbicides because weed sizes were larger (≥ 15 cm) compared with their sizes at the EPOST application (≤ 7 cm). Most programs with LPOST herbicides provided 80 to 95% control at 3 to 4 WA applied LPOST. Based on an orthogonal contrast, using a synthetic-auxin herbicide LPOST improves control of Palmer amaranth and waterhemp over programs not containing a synthetic-auxin LPOST. These results show herbicides that can be used in soybean and that contain auxinic- or HPPD-resistant traits will provide growers with an opportunity for better control of glyphosate-resistant Palmer amaranth and waterhemp over a wide range of geographies and environments.


2019 ◽  
Vol 33 (1) ◽  
pp. 115-122
Author(s):  
Marshall M. Hay ◽  
Jeffrey J. Albers ◽  
J. Anita Dille ◽  
Dallas E. Peterson

AbstractDouble-crop grain sorghum after winter wheat harvest is a common cropping system in the southern plains region. Palmer amaranth is a troublesome weed in double-crop grain sorghum in Kansas. Populations resistant to various herbicides (e.g., atrazine, glyphosate, metsulfuron, pyrasulfotole) have made Palmer amaranth management even more difficult for producers. To evaluate control of atrazine-resistant and atrazine-susceptible Palmer amaranth in double-crop grain sorghum, we assessed 14 herbicide programs, of which 8 were PRE only and 6 were PRE followed by (fb) POST applications. Visible ratings of Palmer amaranth control were taken at 3 and 8 wk after planting (WAP) grain sorghum. PRE treatments containing very-long-chain fatty acid (VLCFA)–inhibiting herbicides provided 91% control of atrazine-resistant Palmer amaranth 3 WAP, and reduced weed density 8 WAP compared to atrazine-only PRE treatments. PRE fb POST treatments, especially those that included VLCFA-inhibiting herbicides, provided greater control (71% to 93%) of both atrazine-resistant and atrazine-susceptible Palmer amaranth, respectively, at 8 WAP compared to PRE treatments alone (59% to 79%). These results demonstrated the utility of VLCFA-inhibiting herbicides applied PRE and in a layered PRE fb POST approach in controlling atrazine-resistant Palmer amaranth, as well as the importance of an effective POST application following residual PRE herbicides for controlling both atrazine-resistant and atrazine-susceptible Palmer amaranth in double-crop grain sorghum.


2017 ◽  
Vol 31 (1) ◽  
pp. 80-93 ◽  
Author(s):  
Parminder S. Chahal ◽  
Vijay K. Varanasi ◽  
Mithila Jugulam ◽  
Amit J. Jhala

Palmer amaranth is the most problematic weed in agronomic crop production fields in the United States. A Palmer amaranth biotype was not controlled with sequential applications of glyphosate in glyphosate-resistant (GR) soybean production field in south-central Nebraska. The seeds of the putative GR Palmer amaranth biotype were collected in the fall of 2015. The objectives of this study were to (1) confirm GR Palmer amaranth and determine the level of resistance in a whole-plant dose-response bioassay, (2) determine the copy number of 5-enolpyruvylshikimate-3-phosphate (EPSPS) gene, the molecular target of glyphosate, and (3) evaluate the response of GR Palmer amaranth biotype to POST corn and soybean herbicides with different modes-of-action. Based on the effective dose required to control 90% of plants (ED90), the putative GR Palmer amaranth biotype was 37- to 40-fold resistant to glyphosate depending on the glyphosate-susceptible (GS) used as a baseline population.EPSPSgene amplification was present in the GR Palmer amaranth biotype with up to 32 to 105 EPSPS copies compared to the known GS biotypes. Response of GR Palmer amaranth to POST corn and soybean herbicides suggest reduced sensitivity to atrazine, hydroxyphenylpyruvate dioxygenase (HPPD)- (mesotrione, tembotrione, and topramezone), acetolactate synthase (ALS)- (halosulfuron-methyl), and protoporphyrinogen oxidase (PPO)- (carfentrazone and lactofen) inhibitors. GR Palmer amaranth was effectively controlled (>90%) with glufosinate applied at 593 g ai ha−1with ≥95% reduction in biomass. More research is needed to determine whether this biotype exhibits multiple resistant to other group of herbicides and evaluate herbicide programs for effective management in corn and soybean.


2019 ◽  
Vol 33 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Vijay K. Varanasi ◽  
Chad Brabham ◽  
Nicholas E. Korres ◽  
Jason K. Norsworthy

AbstractPalmer amaranth is one of the most problematic weeds in cropping systems of North America, especially in midsouthern United States, because of its competitive ability and propensity to evolve resistance to several herbicide sites of action. Previously, we confirmed and characterized the first case of nontarget site resistance (NTSR) to fomesafen in a Palmer amaranth accession from Randolph County, AR (RCA). The primary basis of the present study was to evaluate the cross- and multiple-resistance profile of the RCA accession. The fomesafen dose-response assay in the presence of malathion revealed a lower level of RCA resistance when compared with fomesafen alone. The resistance index of the RCA accession, based on 50% biomass reduction, ranged from 63-fold (fomesafen alone) to 22-fold (malathion plus fomesafen), when compared with a 2007 susceptible, and 476-fold and 167-fold, respectively, relative to a 1986 susceptible check. The RCA accession was resistant to other protoporphyrinogen oxidase (PPO) inhibitors (i.e., flumioxazin, acifluorfen, saflufenacil) as well as the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor tembotrione and acetolactate synthase (ALS) inhibitor pyrithiobac sodium. Sequencing of theALSgene revealed no point mutations, indicating that a target-site mechanism is not involved in conferring ALS-inhibitor resistance in the RCA accession. Of the three PPO-inhibiting herbicides tested in combination with the malathion, saflufenacil resulted in the greatest biomass reduction (80%;P< 0.05) and lowest survival rate (23%;P< 0.05) relative to nontreated plants. The application of cytochrome P450 or glutathioneS-transferase inhibitors with fomesafen did not lead to any adverse effects on soybean, suggesting a possible role for these compounds for management of NTSR under field conditions. These results shed light on the relative unpredictability of NTSR in conferring herbicide cross- and multiple resistance in Palmer amaranth.


2017 ◽  
Vol 31 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Benjamin P. Sperry ◽  
Jason A. Ferrell ◽  
Hunter C. Smith ◽  
Venancio J. Fernandez ◽  
Ramon G. Leon ◽  
...  

Two experiments were conducted in 2013 and 2014 in Florida to evaluate the effects of protoporphyrinogen oxidase (PPO)-inhibiting herbicides and single versus sequential applications on Palmer amaranth control and peanut injury. Protoporphyrinogen oxidase-inhibiting herbicides are among the last available herbicides for the POST control of acetolactate synthase (ALS)-resistant Palmer amaranth in peanut. Lactofen (219 g ai ha–1) applied 5 d after the initial application provided the highest level of Palmer amaranth control 7 and 14 d after initial application (DAIT). Delaying sequential applications of lactofen to 15 d resulted in the highest level of Palmer amaranth control 21 and 28 DAIT. Similar to Palmer amaranth control, foliar injury to peanut was often highest from lactofen applications, and by 28 DAIT lactofen treatments were the only treatments that caused foliar injury. Although no statistical difference was observed between yields of plots treated with acifluorfen (280 g ai ha–1), bentazon (560 g ai ha–1), 2,4-DB (280 g ae ha–1) alone or in combination with each other, plots treated with sequential applications of lactofen 5 or 15 DAIT produced the lowest yields. Sequential applications of lactofen applied 15 DAIT controlled Palmer amaranth more effectively than any other treatment but also caused the highest level of peanut injury. The use of sequential applications of lactofen was the most effective method for control of Palmer amaranth in this study, but did reduce peanut yield.


2021 ◽  
pp. 1-18
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Ramon G. Leon ◽  
David L. Jordan ◽  
...  

Abstract Field studies were conducted to evaluate linuron for POST control of Palmer amaranth in sweetpotato to minimize reliance on protoporphyrinogen oxidase (PPO)-inhibiting herbicides. Treatments were arranged in a two by four factorial where the first factor consisted of two rates of linuron (420 and 700 g ai ha−1), and the second factor consisted of linuron applied alone or in combinations of linuron plus a nonionic surfactant (NIS) (0.5% v/v), linuron plus S-metolachlor (800 g ai ha−1), or linuron plus NIS plus S-metolachlor. In addition, S-metolachlor alone and nontreated weedy and weed-free checks were included for comparison. Treatments were applied to ‘Covington’ sweetpotato 8 d after transplanting (DAP). S-metolachlor alone provided poor Palmer amaranth control because emergence had occurred at applications. All treatments that included linuron resulted in at least 98 and 91% Palmer amaranth control 1 and 2 wk after treatment (WAT), respectively. Including NIS with linuron did not increase Palmer amaranth control compared to linuron alone, but increased sweetpotato injury and subsequently decreased total sweetpotato yield by 25%. Including S-metolachlor with linuron resulted in the greatest Palmer amaranth control 4 WAT, but increased crop foliar injury to 36% 1 WAT compared to 17% foliar injury from linuron alone. Marketable and total sweetpotato yield was similar between linuron alone and linuron plus S-metolachlor or S-metolachlor plus NIS treatments, though all treatments resulted in at least 39% less total yield than the weed-free check resulting from herbicide injury and/or Palmer amaranth competition. Because of the excellent POST Palmer amaranth control from linuron 1 WAT, a system including linuron applied 7 DAP followed by S-metolachlor applied 14 DAP could help to extend residual Palmer amaranth control further into the critical period of weed control while minimizing sweetpotato injury.


2017 ◽  
Vol 31 (3) ◽  
pp. 364-372 ◽  
Author(s):  
Jonathon R. Kohrt ◽  
Christy L. Sprague

Three field experiments were conducted from 2013 to 2015 in Barry County, MI to evaluate the effectiveness of PRE, POST, and one- (EPOS) and two-pass (PRE followed by POST) herbicide programs for management of multiple-resistant Palmer amaranth in field corn. The Palmer amaranth population at this location has demonstrated resistance to glyphosate (Group 9), ALS-inhibiting herbicides (Group 2), and atrazine (Group 5). In the PRE only experiment, the only herbicide treatments that consistently provided ~80% or greater control were pyroxasulfone and the combination of mesotrione +S-metolachlor. However, none of these treatments provided season-long Palmer amaranth control. Only topramezone provided >85% Palmer amaranth control 14 DAT, in the POST only experiment. Of the 19 herbicide programs studied all but three programs provided ≥88% Palmer amaranth control at corn harvest. Herbicide programs that did not control Palmer amaranth relied on only one effective herbicide site of action and in one case did not include a residual herbicide POST for late-season Palmer amaranth control. Some of the EPOS treatments were effective for season-long Palmer amaranth control; however, application timing and the inclusion of a residual herbicide component will be critical for controlling Palmer amaranth. The programs that consistently provided the highest levels of season-long Palmer amaranth control were PRE followed by POST herbicide programs that relied on a minimum of two effective herbicide sites of action and usually included a residual herbicide for late-season control.


2013 ◽  
Vol 27 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Kelly A. Barnett ◽  
A. Stanley Culpepper ◽  
Alan C. York ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic for cotton growers in the Southeast and Midsouth regions of the United States. Glufosinate can control GR Palmer amaranth, and growers are transitioning to glufosinate-based systems. Palmer amaranth must be small for consistently effective control by glufosinate. Because this weed grows rapidly, growers are not always timely with applications. With widespread resistance to acetolactate synthase-inhibiting herbicides, growers have few herbicide options to mix with glufosinate to improve control of larger weeds. In a field study using a WideStrike®cotton cultivar, we evaluated fluometuron at 140 to 1,120 g ai ha−1mixed with the ammonium salt of glufosinate at 485 g ae ha−1for control of GR Palmer amaranth 13 and 26 cm tall. Standard PRE- and POST-directed herbicides were included in the systems. Glufosinate alone injured the WideStrike® cotton less than 10%. Fluometuron increased injury up to 25% but did not adversely affect yield. Glufosinate controlled 13-cm Palmer amaranth at least 90%, and there was no improvement in weed control nor a cotton yield response to fluometuron mixed with glufosinate. Palmer amaranth 26 cm tall was controlled only 59% by glufosinate. Fluometuron mixed with glufosinate increased control of the larger weeds up to 28% and there was a trend for greater yields. However, delaying applications until weeds were 26 cm reduced yield 22% relative to timely application. Our results suggest fluometuron mixed with glufosinate may be of some benefit when attempting to control large Palmer amaranth. However, mixing fluometuron with glufosinate is not a substitute for a timely glufosinate application.


Sign in / Sign up

Export Citation Format

Share Document